
University of Niš

Faculty of Electronic Engineering

Niš, 2002

Ana Stojanovic

Integrating
personalization aspects in
tHE portal framework

Master thesis

I would like to thank

Kai Jauslin

and prof.dr. Slobodanka Djordevic-Kajan

3

1 Introduction

1.1 The actual situation

The amount of data available on the Internet constantly grows. That data is
useful information only if it is available to the right person at the right moment.
And usually that is not the case. Recent studies show that average professionals
spend nearly 30% of their work time searching for information. Problem remains
even if the information quest is narrowed to specific area.

When browsing university websites, for example, one will recognize deep hi-
erarchical structure but usually with overlapping names for different things; tons
of data duplicated, inconsistent and well hidden, doomed to be found when not
needed anymore; document locations frequently changed but no redirection in-
cluded, leaving users with “404 File Not Found” message, although the URI is
correctly spelled or link from same site followed. There is one more thing not to
be forgotten: Different people have different interests. Not everyone is searching for
same piece of information when accessing the same website. It is often stressed
that a user is the only entity on the world who knows what exactly he or she
needs during information quest. The only real way to get individualized interac-
tion between the user and a website is to present the user with a variety of op-
tions and let the user choose what is of his (her) interest at that specific time.
[NIEL98]. Fact is that quite often, while browsing, the user does not know what
s/he is looking for and great choice only confuses. The user needs help to cope
with his or her inability to maintain the underlying connections between informa-
tion sources [KOUL99].

Contemporary web-commerce applications, very often as one type of help
provide recommendation. When recommending, user’s view of the company’s
offerings is personalized, in a way that he is offered products that customers with
similar tastes bought earlier. The motivation of the company owner to recom-
mend is clear, since by recommending the right products (the ones to be bought
by the customer) he increases his profit. On the universities, the situation is dif-
ferent: buyers do not exist and the profit that the university has from
recommendation is not at all obvious. Future set the challenges for the existing
research, science, education and entire environment in which academic services
are provided. After long relatively slow development of university
infrastructure, advance of reliable, fast communication channels of almost
unlimited range, enables rapid development of physical - virtual environments
[ETH00]. These virtual environments should retain original institution spirit.
Therefore, along with the primary goal to make right information available to the

4 Chapter 1 Introduction

with the primary goal to make right information available to the right people,
connecting people among themselves and virtual community formation in the
study groups, campus or around the whole planet.

1.2 ETH World Project

ETH World [ETHW00] is strategic initiative to prepare ETH Zürich for new
information age. The goal of this project is to create universal virtual platform for
communication and collaboration, which will support activities of all people who
work or study ETH. ETH World will expand existing physical locations, "Zen-
trum" and "Hönggerberg", with virtual space, creating third virtual campus in-
side of Swiss Federal Institute of Technology in Zürich (ETH Zürich).

Traditionally, universities and other educational institutions perform research
and other educational activities in physical buildings. These buildings grew, over
time from representative, castle-like structures into functional constructions with
hi-tech installations. Maintenance costs for this infrastructure are a part of total
expenses needed for university functioning and they increase rapidly. Specializa-
tion of research rooms, flexibility of total space decreases, which again increases
the need for space, and so on. With specific research group isolation their ability
to adapt for new research and educational tasks decreases. The logical conse-
quence is that universities with less physical space go ahead in development;
they use greater part of their budget to improve quality of education and re-
search. Therefore it is necessary, to find balance and develop equally physical
and information architecture.

Project ETH World will try to solve this problem decreasing the need for
space, with efficient use of the existing space as well with using available infor-
mation technology. The virtual space will be built on the top of the exiting physi-
cal space. This project will create new type of information and intellectual envi-
ronment that will support interdisciplinary research and make the university
stronger as a whole. In this environment the research groups, teaching and stu-
dent communities will be able to collaborate without any space or time frontiers.
Opposed to other “virtual university” initiatives ETH World does not only pro-
vide distance learning ability and distributed research projects; it primarily has a
goal to support and improve everyday university activities.

Shortly, aims and goals of this project are [ETH00]:

§ ETH World should be understood as an instrument to improve existing
and to promote new methods of research and education, without being an
open university in the classical sense of distant learning. A significant ex-
pansion in the teaching and learning culture will lead to an improvement in
the relationship between students and staff (learning teams), thus eliminat-
ing unnecessary hierarchical structures. Intellectual discourse between all

1.2 ETH World Project 5

members of the ETH community will be intensified and lifelong learning
and collaboration will be fostered.
§ ETH World should act as a community-forming entity. Identification with
the academic institution needs to be fostered. Its users - students, teachers,
researchers, staff members, alumni, and associated individuals-form a col-
lective.
§ ETH World is a network for communication and interaction. It enhances
the human-machine and human-machine-human interface. Its organiza-
tional structure and the quality of its visual appearance will play a substan-
tial role in providing accessibility and ease of movement to prospective us-
ers.
§ ETH World could be viewed as an assemblage of heterogeneous compo-
nents. Whereas its structure might be that of a loose assembly, essentially
decentralized in its overall organization, hierarchies will, as necessary, be in-
troduced locally. It should be conceived as a dynamic system in a state of
perpetual evolution. Users will contribute actively to the growth and trans-
formation of the system. This framework needs to be open and adaptable in
its structure.
§ ETH World, while primarily belonging to the realm of virtual reality, must
closely interact with the physical reality of existing and future facilities. The
relationship between the virtual and the physical spaces must be addressed
in its structure and formal manifestations. The virtual reality is to be set in
relation to the physical presence of the ETH Zurich, and both are intended to
develop a common identity. For that, also the physical reality (buildings,
visual appearance, and infrastructure) must take account of this new iden-
tity which is made possible by the virtual campus.

ETH World conceptual solution is user oriented solution in which technology
plays primarily serving but also an intelligent role.

In order to demonstrate potentials of new scientific, educational and research
environment, ETH World started pioneer projects in various areas, among which
are research tools, e-learning, community building, external relations, information
management and tools for infrastructure. Database Research Group project “In-
formation Search and Coordination“, whose part is my master thesis, is related to
information management.

There are two big problems in contemporary information systems: how to
achieve consistency of information, originating from different multimedia
sources and how to support user-oriented and effective search mechanisms for
information discovery in enormous, virtually integrated data space. In order to
help, system has to know much more about the user than he is ready to reveal.
What makes it even harder is well-known phenomenon in user interface design
(“paradox of the active user“) that people are more motivated to start using

6 Chapter 1 Introduction

things than to take the initial time to learn more about them or set up a lot of pa-
rameters [NIEL98].

1.3 Personalization

Personalized system should gain users trust by building a meaningful one-to-
one relationship; it has to understand the needs of each individual and help him
or her satisfy a goal. That goal efficiently and knowledgeable addresses each in-
dividual's need in a given context. One of the elements of personalization is
building a balanced relationship with the user.

The other two elements of personalization are customization and recommenda-
tion. Customization allows users to build their own user interface by selecting
from different information channels. Recommendation techniques represent sys-
tem ability to use behavior and group preferences or current task-specification to
recommend interesting items to an active user.

Information architecture in this system includes components coming from
three different domains: working context, information contents and users. Users
have profiles, which represent their interests and their behavior. Document con-
tents have certain features which influence personalization (document author, lo-
cation, rating, topic…). Working context provides rules that determine the way
the personalization happens [INST00].

Let us go back to the university example. In this environment there are certain
limitations that ease up the personalization process:

§ Potential user groups are easy identifiable. This fact imposes collabora-
tion: Students are usually interested in information on their lectures, exams,
literature or some information on special events; academic staff in research
and publications, potential students in more information on how their life is
going to look like if they begin studying at that university. Administrative
staff should keep everything consistent and contemporary. Each of these
groups has specific view of (entrance point into) university still very often
these views overlap.
§ Rules are strict and well known, integrated into university constitution,
statute, and schedules.
§ There is a lot of information available but not used. Administrative data
on students can be used to provide them better view of what they are able
and what are not allowed to do.
§ Information is area specific and usually very similarly represented (this
implies that some standards can be adopted).

Although people do not like to be stereotyped, university is the scene where
lots of differences are not visible because interests of groups of users often par-

1.4 Portal 7

tially or even totally overlap. The latter facilitates the use of collaborative filter-
ing.

With these in mind, knowing the goals of the ETH World project and the fea-
ture of a typical portal to provide the user right information at the right time, to-
gether with the search capability, the solution imposed is the portal itself.

And while the organization and communication primitives of the ETH World
project are defined and published by the winner team of the conceptual solution
tender, many different technical aspects should be solved with experimental
studies and the implementation of the ETH World project. One of the solutions is
the portal framework that was developed, as a prototype, by the Database Re-
search Group at the Swiss Federal Institute of Technology in Zürich.

1.4 Portal

„Portal is an exiting, interesting and focused view to one part of the Internet
– be it past, business sector, one organization, company or view to on-line world”
[PRAC].

„Portal is an application or a device that provides users a personalized and
adaptive interface for people to discover, track and interact with other relevant
people, applications and content [MOR99]”.

There are many other portal definitions (see chapter 2), since the word portal
appeared in the on-line dictionary all at once, was accepted from various web site
models, can be used for almost anything and exists in several different variations
- vortal, personal portal...

ETH World portal should be an entry point into the virtual environment cus-
tomized in a way that corresponds to a specific user needs. In this way portal can
be understood as a central interface between infrastructure and that specific user.
Infrastructure is consisted of services (applications) that are offered to that user
by the means of the portal. Portal actually plays double role: for applications it is
a run-time environment (framework), while for a user it is an information pre-
senter. Portal should, as interface, fulfill several requirements, and some of them
are:

§ Dynamic presentation. Selection and presentation of corresponding person-
alized information on different terminals. This is achieved by using dy-
namic, not static structures, for variable content pages representation. This
concept supports total separation of presentation and information. It is re-
quired to separate programming logic and specific user data as much as
possible. This way site maintenance becomes easy and any data change sim-
ple.

8 Chapter 1 Introduction

§ Personalization. Individual entry point and authentication i.e. one user
identification (single sign-on). Information on specific user is transparent for
different applications, which enables them to adapt according to a specific
user needs.
§ Framework. A large number of services and libraries that provide simple
application deployment. The integration of external information sources
should be provided with minimal additional costs.
§ Maintenance and Deployment. Portal provides authors with clear interface
offering them corresponding programming support.
§ Security. Interface provides user identification, authentication and au-
thorization.
§ Scalability. Concept should, basically, work with large number of users
and under heavy load.

ETH World portal prototype enables user and session identification and dy-
namic presentation creation, in a two step process:

§ application call and output transformation, and
§ Adaptation of certain application dependent user parameters (customiza-
tion). These parameters are, at the same time, available to template as XSLT
parameters.

1.5 Technology

System is implemented using JSP [JSP] and Java Servlet technology [JSWP];
XML is used for data interchange between different applications, as well as be-
tween certain applications and existing framework . XSLT is used for transforma-
tion of XML documents into different presentation formats (HTML, SVG, PDF,
WML etc...) in accordance to specific user needs and used input-output device.

JSP technology is used because it inherits all good features of Java technology,
including platform and server independence, modular architecture with reusable
components, and access to all Java APIs (like JDBC, JavaMail, and Java Transac-
tion Service). The feature that makes JSP technology unique is Custom JSP Tags.
It refers to creation of custom tag libraries of frequently used functions and their
distribution to large number of authors (Java Community Process). This way is
achieved the total separation of look and feel and logic in every created page. Since
the tags are executed on the server side, on client side they do not impose any
further limitations. Additionally, since each of the tags implements specific func-
tionality their use becomes intuitive and therefore understandable for non-
programmers. Tags enable generation of new and manipulation of already exist-
ing information; for example, the use of JDBC enables application programmers
access data that resides in already existing databases; the use of Java-COM
Bridge enables communication with Microsoft components, that are attached to

1.6 The Goals 9

the portal framework; they provide access and generation of XML documents,
different kinds of filtering…

The aim of the prototype deployment was to use as much as possible off-the-
shelf components. Since the goal of the project as a whole was to prove that the
use of collaborative filtering techniques in academic environment can encourage
and improve real-world communication and formation of virtual, as well as real
communities (ref. section 1.6), and not discovering a new one, the Microsoft
Analysis Manager is used for entire user population segmentation. For commu-
nication with this tool OLE DB for Data Mining is utilized, since it is supported
from other data mining tools, which enhances portability.

1.6 The Goals

The goal of this master thesis was the extension of existing portal framework
with module that enables recommendation. Since the basic functionality of every
portal is to present the user the information that he will either find interesting or
need at that specific moment, one way to do it is provide him/her a view to all
the topics that were seen by the people with similar interests. Since this means
taking out all the users that have no influence on that specific topic and all the in-
formation of no significance for that topic, this process is also called collaborative
filtering (CF). The term collaborative, in this context, is defined in [GOLD92] and
includes the situation in which people help each other (i.e. collaborate) by filter-
ing unimportant information. They actively react on presented information in a
way that they, for example, mark read document as interesting or particularly
uninteresting. The idea is not at all new (ref. chapter 3) and is already used in
many web-commerce systems, one of which is, for example Amazon.com (where
user’s interest in a specific product is indicated by his/her buying it). Explicit
identification of specific users in a virtual community, additionally, encourages
real-world communication and building social networks. This feature, though of
absolutely no importance for e-commerce environment becomes valuable in an
academic environment.

The developed recommendation module (advisor) is a part of the framework
(ref section 5.2) and its function is to help user in selection process. Identified
user is in every selection process recommended a list of options that the system
thinks are the most interesting to him. When using this module, application pro-
grammer, needs only to provide the criteria upon which the recommendation is
generated. The advisor module is developed as a JSP tag library, which makes it
(but not totally) independent of portal framework. Currently this tag library pro-
vides use of data mining clustering technique that enables segmentation of entire
user (or information) population according to the imposed criteria. This way new
information on grouped subjects is discovered. Newly discovered information
can be utilized to help system users during their interaction with the system and

10 Chapter 1 Introduction

make their experience more pleasant and useful. The presumption that stood
during this module deployment was that were no security or privacy problems i.e.
that the system is available all the information on all the users and that it can util-
ize them for knowledge discovery.

Additionally, some applications were deployed (for example timetable,
course selection application…- ref chapter 5), that will provide collection of new
data on individuals and user groups. These applications provide the user with
information, whose structure and content are profiled according to users needs
and respect the rules imposed by the environment. The applications are devel-
oped according to the specification for application development in the portal fra-
mework [JAUS01] and utilize all the advantages of the JSP/XML technology that
underlies this specification.

The proposed research was realized on Institute for Information Systems ETH
Zürich and personalization module is integrated into existing ETHWorld portal
prototype.

11

2 Portals

2.1 Portal is...

Great and impressive entrance (frequently used in metaphors); for example,
"cathedral portals", "portals of Eden", "portals of success".

And in the Internet dictionary:

Portal is an application or device that provides a personalized and adaptive
interface for people to discover, track and interact with other relevant people,
applications, and content [MOR99].

Portal is an application that collects contents relevant for the actual user
[CHU00].

Portal is an exciting, interesting, and focused view to the specific part of the
Internet – be it past, business sector, one organization, company or a view to an
on-line world [PRAC].

Portal provides secure, single point of access to various information, business
processes, and people, personalized in accordance to users’ needs and responsi-
bilities [IBM01].

Portal is a gateway or an entrance to the Internet; homepage in a Web
browser, for example Infoseek, Excite, Yahoo, Lycos, and so on. Generally, portal
is a web site that offers a broad range of resources and services, including e-mail,
discussion forums, search capability or some other on-line services. It is deployed
as a response to user needs to filter information and receive fast and simple in-
formation access to web whenever they need it [MIL01].

Portal is a technology that enables one company or organization to open itself
internally and towards the world, and offer its users unique gateway to personal-
ized information, necessary for making important decisions. Portal is an amal-
gamation of software applications that arrange, manage, analyze and distribute
information across and outside the organization (and include Business Intelligence,

12 Chapter 2 Portals

Content Management, Data Warehouse, and Data Management applications). Portal,
mainly, presents an ability to modernize information access.

Portal is a personalized gateway that combines all relevant information
sources into unique user’s world. Portals enable users to track their business
tasks, receive information arranged according to their taste and communicate
with their colleagues. Portal should seamlessly connect all Internet and organiza-
tion intranet elements and provide users ability to search both, Internet contents
and internal documents.

Word portal means many different things to many different people. Uncer-
tainty is built into its history, since it suddenly appeared in the on-line diction-
ary, was accepted for several different web site models, can be used for almost
anything and already exists in several different variations - vortal, personal por-
tal, corporate portal...

Simply put, portal provides right information to right users at the right time
using web, mobile and other devices. Mobile devices and pervasive computing
concept discover the other side of the portal. It is possible to get all the necessary
information on some organization by accessing its web site or using any Internet
portal, any time and from any location. Information is adapted to specific user
needs independent of the way it is accessed, through PC or some mobile device.
Using aggregation and personalization (figure 2.1), portals provide every user
with an individual view on the organization web site or individual entrance to
Internet and provide them efficient access to all the necessary information and
application. For pervasive computing devices this ability is critical, since the net-
work range and available resources are extremely expensive. Wireless portals
provide user with time and location dependent and user specific content.

Figure 2.1 Basic portal functions

2.3 Portal types 13

2.2 vs. Home page

Portals, more and more, replace home pages of different organizations. Integra-
tion of different services and personalization differ portal from owner-oriented
home pages. Portals are not horizontal entrances to a web site, but an exit to the
market of various services.

The basic distinctions between home pages and portals are [GNAG01]:

§ Home page is defined with static contents, and portal with dynamic. In a certain
way traditional home page is like a publication: Once written it is distributed
to different users, which read it. In that sense portal is similar to a publishing
company. Portal continuously collects information from various information
sources, for example university databases and external news feeds and
hands them to the correspondent public.
§ Home page provides links to information; portal connects the user directly to in-
formation tools. Though this may seem like a small difference, it is not. “Old-
fashioned“ web site can provide link that leads to a library home page, that
demands a log to a catalogue ...while one logging to a portal, provides a user
direct service utilization, for example catalogue or e-mail or course monitor-
ing – without need for any further logging.
§ Home page is the same for every user; portal is different for different users. Por-
tals aim to provide adaptive home pages (for example, Yahoo enables add-
ing and deleting different information sources and links). In an university
environment this kind of site should automatically recognize if the user is a
student, lecturer, potential student or alumni—and offer him adapted in-
formation, services and data access.
§ -Main purpose of a home page is information; while main purpose of a portal is
business. When constructing a home page, various facts, plans, reviews and
editions are collected. Portal contains all these but its basic function is to col-
lect something more: a heap of e-mail and search programs, personalized
calendars, selection tools, course access and manipulation and so on. While a
home page, mainly collects, formats and presents information portal provides
additional functional layers: it controls credentials and access rights, pass-
words, and integrates databases and collects payments.

2.3 Portal types

2.3.1 Focus

Portals are, usually, focused on some subject - interests, business sector or or-
ganization (external and internal portals). In any case, main benefit from using
portal approach is saving user’s time by taking out large part of “noise” from

14 Chapter 2 Portals

Internet, and identification of interesting sites and contents. According to the
range of themes they cover, two different types of portals can be distinguished:

§ Horizontal portals (general-purpose portals – megaportals). These portals
list contents available on Internet, act as hubs that help users locate contents
needed and access them. Business model of this type of portal is based on
selling space for advertisement banners and successful directing web surfers
to the destinations wanted. In this way they insure their existence. At the
moment, these portals offer access to a broad specter of on-line information
sources and services. Although there is no unique model that defines portal,
all portals have at least next four basic features: they enable web search,
show news, and provide tools for referencing and some communication ca-
pability (for example, e-mail or chat). The most famous are Yahoo, Excite,
and AOL…

Figure 2.2 One horizontal portal - Excite

§ Vertical portals (vortals): web sites that provide unlimited amount of in-
formation that refer to relative narrow areas of interest. This is currently
fastest growing type of Internet portals. Vertical Internet portals can be dis-
tinguished from horizontal portals in the range of users that they target.
Horizontal Internet portals try to serve the entire Internet population, while
vertical portals target niche audience – usually interested in a specific activ-
ity. Vertical portals provide contents, relevant to that organization, with
links to the organization, partners and even web sites of concurrent organi-
zations. One of the goals of a vortal is to provide community and collabora-
tion capabilities that aim this activity or group, and e-commerce services for
products and services relevant for that activity or group. Vertical portals be-

2.3 Portal types 15

come more and more popular, especially in the business-to-business (B2B),
business-to-customer (B2C) and business-to-employee (B2E) domains. Verti-
cal portals should be built over the horizontal portal infrastructure.

Figure 2.3 Architecture of a vertical portal

One of the key features of all the vortals is the way they inform their users
about existence of the Internet resources. Main objective of the vortal is to
“painlessly» direct its users to the best resources for specific domain.

§ The most important tool of the vortal is discussion forum, location where all
the equal-minded people can meet, discuss about problems from their inter-
est domain, send messages and receive answers.
§ On-line, up-to-date calendars inform portal users about important upcom-
ing events. These calendars are typically global by nature, organized by sub-
topics and searchable by geographic regions and many other useful ways.
§ Classified advertisements are frequently one of the most important vortal re-
sources. There users can publish (or search) articles of common interest. This
“billboards” besides search enable sending messages and searching other in-
formation available on that specific product or service.
§ Rotating banners are a usual part of a vortal. Good advertisements inform
users about potentially valuable products and services, and if they are not
too imposing, large, colorful and have right content. At the same time they
cover provider costs, whose main goal is creating a site that would be rele-
vant to its users.
§ On-line surveys can provide valuable information for vortal users. A large
number of users are to publish their opinion on some subject.
§ And at last, search engines. Since the goal of the most of the vortals is, to to-
tally, organize all Internet resources, that are related to the specific topic,
into one site alone, most of them, at the same time, starts its own life. As the
Internet grows, grows the vortal. Without good search tool a great part of
portal capacity stays unused. Good search engine provides users many ad-
vanced search techniques.

Figure 2.4 shows vortal KoreaLink.com. In it everything, from the best Kim
chi restaurant in USA to Korean keyboard signs can be found. Chat, singles fo-
rum and much other information on Korean community, products and services
can be easily located and searched using this portal.

16 Chapter 2 Portals

Figure 2.4 An example of a vortal: KoreaLink

A separate subgroup of vortals consists of corporate portals.

2.3.2 Corporate Portals

Corporate portals connect users, not only to all the information required, but
also with all the people necessary and provide the collaboration tools. This
means that corporate portal provides access to all the groupware, e-mail , workflow
and desktop, even critical business applications.

There are at least four sub-types of corporate portals:

§ Information portals connect people with information, by organizing large
collections of content based on subjects or themes.
§ Collaboration portals enable teams of users to establish areas or working
groups for virtual projects along with tools for collaboration. This way they
provide them with the possibility to collaborate.
§ Expert portals connect people together based on their skills and experi-
ences, as well as their information needs.
§ Knowledge portals are the combination of all of the above to deliver person-
alized content, based on what each user is actually doing.

2.3 Portal types 17

Figure 2.5 An example of a corporate portal (SAP community portal)

Concerning the information access corporate portals differ from Internet por-
tals in that they are:

§ Comprehensive: Unlike web portals they provide access to a lot of various
data formats.
§ Organized: they organize access to information so that users can browse
them.
§ Personalized: they collect individual views to relevant information and no-
tify users on the availability of new material via electronic mail or other me-
dia.
§ Location-transparent: They organize data access but they do not store the
data itself.
§ Extensible: They support system extensions in a way that they provide the
capability of cataloging new types of information.
§ Automated: They automatically identify and organize access to new con-
tent.
§ Secure: They provide selective broker access to internal corporate informa-
tion.

18 Chapter 2 Portals

2.4 What makes a portal a portal

Portal is an application or a device, which provides a personalized and adap-
tive interface for people to discover, track, and interact with other relevant peo-
ple, applications, and content. Key features of a portal are [MOR99]:

Personalization for end user is the most critical features. A portal must deliver a
personal or community desktop for every user by establishing unique look, con-
tent, and application interfaces and proactively rendering them based on the
user’s role in the community or by actively tracking the user’s individual usage,
interests and behaviors.

Organization of the users working space to eliminate the information glut. Users
want consolidated access to relevant people, applications and contents. The con-
cept of stovepipe applications became a thing of a past. Organization wants simple
controls to design their desktop in a way that suits them.

Resource division determines who sees what. Portals must have membership
services layer for user authentication, single-sign-on and credential mapping. Us-
ers demand the highest level of security, but the least amount of annoyance.

Tracking of activity provides users with a payback for using the portal. The more
users use the portal, the more it becomes tailored to specific interests and affini-
ties the user may develop. Though, this may sound threatening at first, users
should have the ultimate control over what gets tracked.

Access and display of aggregated multiple heterogeneous data stores, including
relational databases, multidimensional databases, document management sys-
tems, e-mail systems, web servers, news feeds and various file systems/servers
(audio, video, image, and so on). It is extremely helpful for users to see their e-
mail next to news feeds, and a list of on-line users who can help them understand
the information while maintaining a single context.

Location of important people and things. A portal is based on the basic desire of
users to easily find information and people by searching or navigation. The
means that can help users passively (or actively) discover the experts, communi-
ties and content in a relevant context, should exist.

2.5 The Basic Portal Components

Portal is a tool for managing intellectual assets of an organization, its content
and data. Basically, business information portals, business-to-business, business-to-
employee, university and public web portals all have to fulfill the same require-
ments. They all need to have scalable infrastructure, flexible and powerful pres-
entation framework that enables simple portal building. All of them demand
high level of personalization so that the user is delivered the most valuable in-
formation, and therefore enable more useful interaction and intensify user’s loy-

2.5 The Basic Portal Components 19

alty to the portal. Specific types of the portal, off course, have some unique re-
quirements. Depending on the nature and volatility of information, some kinds
of a portal can demand higher level of security that includes specialized forms of
authentication and access control. Depending on the number of users, some por-
tals can demand high level of accessibility and the ability of extension. Customer
portals, generally, allow users to log-in and manipulate their accounts. Opposed
to it, business portals frequently require integration with existing user databases
or access systems. University and other types of institutional information portals
have to provide their users all those services that are available to them in the
physical institution.

Figure 2.6 The architecture for one portal

Due to the complexity of the challenges that are posed to a portal, it requires
following nine architectural elements (figure 2.6) [DG00]: Presentation, Personal-
ization, Collaboration, Process, Publishing and Distribution, Search, Categorization, In-
tegration and Learning Loop.

2.5.1 Presentation

Portal accesses a large number of information channels and all this needs to
fit comfortably in a small display space. Besides that it has to support “zero train-
ing” operation for users. The basic features of this architecture component are:

20 Chapter 2 Portals

§ Color: color schemes establish the look&feel of a portal and can be used to
more readily communicate data. Users are frequently reinforced by the abil-
ity to personalize the look of their portal and color is an easily managed at-
tribute for most interfaces.
§ Application layout,
§ Dynamicity, portals can present information to their users based not only
upon user role but also upon how user accesses the portal and what process
the user is engaged in.
§ Device Independence, ideally the portal will manage all user devices appro-
priately; but this is a tall order in today’s e-crazed environment with portals
accessed by everything from desktop and laptop browsers to PDAs and cell
phones.

2.5.2 Personalization

Personalization is a critical portal ingredient as it provides both productivity
enhancement and effective individual information management. This component
filters the information specifically for the user’s working style and content pref-
erences. Personalization has become necessity because the volume of information
available in the Internet-enabled electronic business environment has outstripped
the capacity of the individual to organize and process it. This component offers
two new value propositions to end-users:

§ they can elect to display/not display particular categories or channels of
content and
§ They can control the placement and prominence of the content displayed.

Personalization includes: user interests and profiles, publish subscribe informa-
tion access, storing event sequence, putting filters, customization capability, con-
text help and preposition based learning (reference section 3.1).

2.5.3 Collaboration

Collaboration is the component, which expands portals from passive informa-
tion kiosks to new discussion forums that enable interaction among any combi-
nation of users. Portals should enable:

§ Asynchronous communication (for example, discussion groups or room
for team members that collect all documents, plans, and everything else that
belongs o that group of users), and
§ Synchronous communication (for example, chat forums).

There are six types of collaboration that a portal should support: synchronous
live (chat), asynchronous linked (e.g. questions and answers), asynchronous sepa-
rate (e.g. e-mail), content development (e.g. document revision), group polling,
moderated (building consensus or finding common perspectives).

2.5 The Basic Portal Components 21

2.5.4 Process

Since most portals focus not just on information accessibility but on e-business
management, process support is critical to many portals. This is the component
that enables portal users to initiate and/or participate in online e-business proc-
esses. Increasingly, the need to introduce process automation capabilities (such as
those found in today’s commercial workflow software) to enable predefined proc-
ess flows monitoring. Portals should support the following six process types:

§ Integrated processes – are supported by infrastructure external to the portal
itself, and are integrated “transparently” into portal services.
§ Inherent processes – are supported by infrastructure internal to the portal.
§ Wide-area support – to support workflow and processes across wide area
networks, the portal must manage a variety of communication protocols and
user interfaces.
§ Role-based processes – role-based services support standard processes based
upon the common roles of the user (e.g. call-center supervisor, clerk …).
Most often these processes are internal to the business.
§ Modifiable processes – there exist a large number of organizations that sup-
port user modification of processes. Very often, these processes are internal
to the business.
§ e-Process linked - portal should enable transparent linking to existing e-
business processes. These processes already exist in external or partner or-
ganizations.

2.5.5 Publishing and Distribution

This component supports creation, authorization, inclusion in portal content
collections and distribution of structured and unstructured information, in mul-
tiple on-line or hardcopy formats. These services are usually referred to as Con-
tent Management services. The goal is to support creation and flow of information
in the organization while minimizing the required portal infrastructure and ad-
ministrative support. This architectural layer provides:

§ Author support – this is a set of tools available for authors to create, publish
and maintain the portal content
§ Posting control – frequently information should be available on precise
days and times.
§ Modification - users must be able to significantly modify documents.
§ Conversion - automated, transparent conversion services ease the burden
on the author and administrator, making the information collections more
useful and increasing utilization.
§ Internal contents - are contents created and published in the organization
that rely on the portal infrastructure.

22 Chapter 2 Portals

§ External contents – are contents that the organization syndicates or ac-
quires from external sources, and rely on the infrastructure external to the
portal. For example, news clipping services.
§ Link Integrity – since the most of the portals provide information to users
through hyperlinks, maintaining their integrity is of critical value.
§ Records Management,
§ Renditions – rendering contents in various formats
§ Derivations - portals should ease the management of multiple versions of
commonly derived objects. For instance, a 35mm high-resolution photo used
for annual report might also have scanned medium-resolution derivative,
useful in a corporate newsletter and a third data-light, lower quality version
used on the web site.

2.5.6 Search

This layer in the portal architecture provides tools for identification and ac-
cess to specific information within document collections, available at and
through the portal. Many collections of information are quite large. Enabling the
effective search across the information requires indices or other management
structures. Portal should support different combination of the following search
schemes:

§ Text box - user types in a keyword. “Full-text” search capability is the best
for the advanced users, the ones that know what they are looking for.
§ Parameterized or led – the user is, usually, offered a set of parameters and
the user marks just the ones they found important. This type of search tools
is good for users that have an idea about what they are looking for and need
help to refine their search criteria.
§ Case-based reasoning and suggestive search - this type of parameter search
leads user through the sequence of steps, in order to find the best choice. The
system suggests the further query refinement, based on the observation of
user actions during the search process. Opposed to the led search the part of
information accessed this way is not chosen according to the user criteria.
This system is efficient in the cases when rules can be defined or if/then
analysis is possible.
§ Predefined search – this type of search depends on site search history and
discussion with users that frequently access that site.
§ Collaborative filtering – this tool suggests categories or specific documents,
which the user could find interesting. Suggestions are formed based on the
selections of the users with similar profiles and/or behavior.
§ Natural language context-based - users have the ability to present their re-
quests in their native language, since the system will be able to understand
their query in the active context.

2.5 The Basic Portal Components 23

2.5.7 Categorization

The benefit that categorization brings is providing the context. This compo-
nent implements organization-specific taxonomy that helps understanding in-
formation and enables fast recognition and useful utilization of this information.
The four most common categorization approaches are: automatic, manual, dy-
namic and modifiable. The most frequent is the categorization that combines all
of them.

§ Automated categorization relies upon software tools that assess information
collections and repositories. These tools rely on statistical and semantic
methods, and extract taxonomic characteristics and hierarchies.
§ Manual categorization relies upon architects, analysts and users. Although
this approach gives accurate results, which are tailored to the organization,
it is labor intensive and challenging to maintain.
§ Dynamic categorization is a type of automatic approach. Information hierar-
chy is dynamically maintained and updated based upon additions and dele-
tions to the repositories and upon changes in the organizations processes
and information use patterns.
§ Modifiable categorization - very often different categorization taxonomies
are required in the various departments of the organization. This is why, in
the Internet era, users should have the ability to modify existing categories
and adapt them to their needs.

Categorization includes: taxonomy organization (systematization), index
search, automated classification collection, segmentation, metadata manipula-
tion, and discovery of new contents, connections among structured and unstruc-
tured data, business knowledge, and ties to external contents.

2.5.8 Integration

The success of most portal implementations depends on integration - incor-
porating structured data (e.g. legacy systems and data warehouses) and unstruc-
tured information (everything else, from e-mails to word-processing). The wide
range of potential information sources, the breadth of user requirements and the
unpredictability of information needs at any given point in time present chal-
lenges that are not addresses by traditional application development and main-
tenance cycles. The challenge of the portal is to create the network of information
sources required to responsively and flexibly support the specific day-to-day
knowledge requirements of the portal’s users. There are six categories of infor-
mation sources: internal and external legacy systems, internal and external data-
bases, and internal and external new data.

24 Chapter 2 Portals

2.5.9 Learning Loop

This component differs from others in that it is not concerned with a specific
aspect of information management, but in the ongoing effectiveness of the portal
itself. This component enables the portal to adjust heuristically to changes in the
organization’s work and information environment. In order to be effective, portal
should, from the very beginning contain a learning component. Though it may
seem a bit scary, this requirement could be fulfilled by use of available and well-
understood analysis tools, including usage metrics (e.g. who are the portal users,
where they are searching for information etc.), content evaluation (identification
of those information elements that are of value to users and those that are not)
and intelligent content management (agents, neural networks, natural language
processing). Learning loop utilizes the following eight services:

§ Authoring & posting - portal should monitor users authoring/publishing
habits and use them to modify the information presented.
§ Page Hits – it is possible to assess the way the portal users access portal
contents. When mapped to user profiles page hits provide a key means for
monitoring and improving the effectiveness of the portal.
§ Access Habits – the types of devices used to access portal can be analyzed
to find better ways of access and improve portal support.
§ Community – by being attentive to the user community and by getting
used to their style and the information content, portals become very valu-
able to their users and create more enduring and fruitful relationships
among members of the community. Learning loop informs users and en-
ables the development of community and community services.
§ Transactions & processes – supported by the portal give significant informa-
tion on portal users. This information provides insight into potential im-
provements in productivity.
§ Process involvement – by providing detailed information on the supported
processes, learning loop enables refinement of user tasks and refocuses the
activities where the most benefit can be gained. When users change their ac-
tivities, learning loop recognizes these changes and adapts.
§ Preferences – when the learning loop provides enough information on user
activity, analysis can determine additional valuable services and alternative
user preferences that can improve portal influence on costs, quality and cy-
cle time. When the preferences are changed learning loop should identify
the change and help user find the information needed.
§ Polling – is a way of providing users to proactively instruct the portal on
modifications they would like to see. It can be very effective means of rating
already deployed contents.

2.5 The Basic Portal Components 25

2.5.10 Portal Foundation Elements

One of the portal goals is to coordinate existing services and the ones to be
developed and try to improve their effectiveness or their value. Portal must com-
plement information technology context it exists within. This is especially true
for the portal foundation elements in the areas of security, directory services and
authentication.

2.5.10.1 SECURITY

Since the portals potentially provide users large amounts of information, one
of the most important portal tasks is to provide that only the right people can ac-
cess the portal environment and only the systems they are authorized to. The ba-
sis for working with the personalized web applications are user authentication
and secure single sign-on mechanism (ref figure 2.7).

Figure 2.7 Portal security schemes

Authentication assures that the user which accesses the specific data source is
really the one he claims to be. Authentication method refers to the type of logon
information that must be forwarded to the server when the user tries to access
some information resource. This process is usually preceded by identification
level. This two level system has sense, since the closeness is achieved by user
identification, while by user authentication (user name/password) portal gains users’
confidence.

§ User Identification - Portal should recognize user during the active session,
even before he has actually introduced himself (e.g. entered his user name
and password). A benefit that identification brings is fast access to the por-
tal. Sometimes, various people can access personal information on a specific
user. Some applications can therefore decide whether to use authentication
or not. It is most probably desirable when a user is changing his/her prefer-
ences.

26 Chapter 2 Portals

§ User Authentication – User is requested to enter his/her credentials into sys-
tem or show Kerberos ticket. This authentication is then applied to the rest
of the session and relies on the existing organizational infrastructure.

Single Sign-On (SSO) is one of the key features of the portal that makes the
user - system interaction easier. Once, when the user is authenticated by the por-
tal, he/she can use the portal to access external applications. The user can actually
access different systems and applications without need for any further authenti-
cation.

Authorization is the process of giving individuals access rights to a system
based on their identity. Authorization level refers to who is allowed to set the
user mapping to a specific portal data source. It is the actual check of the map-
ping permissions that were defined for the data source that the user is trying to
access.

2.5.10.2 DIRECTORY

Through the portal, user can access various systems, applications and data-
bases. Usually every of these systems has its own repository with information on
users. The consequence of storing user data across different storages is redun-
dancy, and therefore errors. For user data integration with the goal of user man-
agement many organizations utilize directories, based on Lightweight Directory
Access Protocol-u (LDAP), as a central repository of user profiles. Directory is a
specialized database adjusted for fast reading and search. It stores descriptive in-
formation, usually as attributes and supports advanced filtering techniques.
Commonly, directories do not support complex transactions and roll-back
schemes, but the replication ability with the goal of increasing availability and re-
liability, and decreasing the response times. LDAP is a lightweight protocol for
directory service access that utilizes TCP/IP and other connection-oriented transfer
services. LDAP information model is based on entries. One entry is collection of
attributes that has a unique global identifier (distinguished name - DN). Every at-
tribute of the entry has a type, and one or more values [LDAP02].

An active directory strategy is one of the key support elements for the portal,
since most advantages they offer depend on the personalization of services for
specific user. Existing directory of the organization is, frequently, primary stor-
age of all the user information, required to tailor messages, information sources
and authorization configuration. While integrating profile maintenance methods
portal should use the existing directory functionality.

2.5.10.3 TRUSTED CONTENT

Trust is a critical factor for the growth of Internet content in the business envi-
ronment. Information suppliers should, in order to gain user confidence, with the

2.6 Elements of knowledge management 27

contents provide the certificate that the content is what it says it is while provid-
ing the information of where the content has come from and where it has been.

2.6 Elements of knowledge management

Portals deliver their users the promise of knowledge management providing
them with the single point of access to the people, places and things that exist
within and across their organization boundaries [MOR99].

People: People are among the most valuable assets of the organization. People
retain critical business knowledge i.e. knowledge of processes, contacts and re-
sources – that can make the difference between success and a failure of the pro-
ject. On-line “people awareness” and real-time communication tools, provide ac-
tive user means to view the status and on-line location of other users. Moreover,
those tools provide means to engage users in instant on-line communication
through easy-to-learn and easy-to-use interface.

Places: Places provide a context for work activities. Similar to the physical of-
fice space, an on-line workspace needs to be well equipped and well organized so
that the people can focus on their task and not the tools needed to achieve it. Por-
tals provide their on-line workspaces with out-of-the-box templates that can be
used to immediately design and implement workspaces. Besides that, application
authors can create templates, which meet their business needs and can customize
details such as their look and access rights. When the places are instituted, they
make it easy to non-technical users to perform their tasks and communicate with
others. The result of their efforts — business plan or an RFP—then becomes a re-
usable knowledge object that can be accessed by others who may want to do similar
work. Therefore, places not only provide the context for the knowledge devel-
opment, but also a means for its preservation and ultimate reuse.

Things: Things are the essential resources or contents that people can access
and utilize to perform business tasks. The reports, the documents, the web sites
are all things that are used in daily business activities. This various types of con-
tent can be displayed and arranged in a meaningful context. In order to improve
effectiveness of their personal and group-based efforts users can arrange things
in their personal and community places.

People, places and things are fundamental components of a portal solution. By
connecting people through real-time technologies, portals should improve the
speed and accuracy of business decisions. Through collaboration features, com-
munities can assemble, collaborate and innovate across geographical boundaries.

28 Chapter 2 Portals

2.7 Benefits of the portal

Based on the preceding analysis the following benefits that portal brings can
be identified:

§ Users receive information through a standardized web-based interface.
§ Users can mutually interact, query and share information right from their
desktops.
§ Portals integrate disparate applications and other data external to these
applications into a single system. This system can share, manage, and main-
tain information from one user interface.
§ Portals provide users access to external and internal data and information
sources.

29

3 Personalization

3.1 Personalized system

Personalized web application is a hypermedia system, which adapts its con-
tent, structure and/or presentation of the networked hypermedia objects to each
individual user’s characteristics, usage behavior and/or usage environment. The
term hypermedia system includes interactive system that enables users to navigate
through the network of linked hypermedia objects, while latter contain a set of
related content bearing elements of different media types, like text, images, video
- clips, audio - clips, small applications and interaction elements (e.g. menus, but-
tons, checkboxes); they actually enable navigation through web pages [KOE01].

In contemporary web applications personalization commonly includes some
of the following processes:

§ 1-to-1 relationship and other processes that automatically treat users differ-
ently depending on their demographic and static profiles (data collected in
the registration process) or earlier interaction with the system. These proc-
esses are supported by the systems for manual rule definition, in which ad-
ministrators define rules that determine what content is presented to which
user.
§ Customization, where users build their own user interfaces by selecting
from different information channels. Actually, the user himself defines what
he wants to see.
§ Recommendation of new contents became irreplaceable part of personalized
systems, as a tool for selection of the information relevant to the active user
from the sea of information available on web. There are two generic ap-
proaches to the recommendation process: clique-based filtering and content-
based filtering , as well as a number of hybrid systems that uses the advantag-
es of both generic approaches with the goal to overcome their weaknesses.

All of the indicated personalization processes can be divided in three major
tasks that are usually performed by different system components [KOE01]:

§ Acquisition is the task of identification of all the available information
about users’ characteristics and computer usage behavior as well as about

30 Chapter 3 Personalization

usage environment either by monitoring the computer usage or by obtaining
the information from external sources. The collected data is afterwards de-
livered to the application adaptation component that will construct initial
user, usage and environment model.
§ Representation and secondary inference are the tasks to express the content of
the user and usage models in a formal system, to allow access and further
processing and to draw secondary assumptions about users and/or user
groups, their behavior, and their environment, thereby integrating informa-
tion from various sources.
§ Production is the task to generate adaptation of the content, presentation
and modality, and structure, based on a given user, usage and environment
model.

3.1.1 Information Architecture of a Personalized System

Generally speaking, personalized system is a software product that applies
rules to profiles of users and content to provide a variable set of user interfaces
[INST00]. The information architecture components for a personalized system
come from three areas of working context (determines the way the personaliza-
tion happens); content and users (figure 3.1).

Working Context
Models&goals, politics,

culture, resources

Content&
Applications

Document types,
structure,
attributes, meta-
information

ETH World
Constitution, codes,

rules, experience

Lectures,
publications,
departments

Content

Users

Students,
staff and
visitors

Users

Information
needs,
audience
types,
expertise,
tasks

Working Context
Models&goals, politics,

culture, resources

Content&
Applications

Document types,
structure,
attributes, meta-
information

ETH World
Constitution, codes,

rules, experience

Lectures,
publications,
departments

Content

Lectures,
publications,
departments

Content

Users

Students,
staff and
visitors

Users

Information
needs,
audience
types,
expertise,
tasks

Figure 3.1 Information architecture for personalized system

Personalization is a data-intensive task. One part of data can be observed by
the system directly, while most others may require one or more additional acqui-
sition steps.

3.1 Personalized system 31

3.1.1.1 USER DATA

Users have profiles that represent their interests and behaviors. Specific val-
ues for a profile are determined by the set of defined attributes and the possible
values for each attribute. These attributes may include demographic data on user
(as objective facts), assumptions on user’s knowledge about concepts, user’s skills
and capabilities, interests and preferences, goals and plans.

In most of the cases, today’s personalized web sites operate on the basis of the
demographic data and purchase data only. The value of these data can be high
when combined with high-quality statistic data. Among the rest it can contain re-
cord data (e.g. name, address,), geographic (e.g. area code, city, state…), user
characteristics (age, sex …), registration for information offerings …

Assumptions on users’ knowledge (or beliefs) about concepts, relationships
between concepts, facts and rules with regard to the domain of the application
system, are the ones among the most important personalization sources. Adapta-
tion to a user’s knowledge is a typical feature of intelligent tutoring systems.

Interests among users of the same application often vary considerably: infor-
mation and advertisements targeted to one particular interest group may be of no
interest to another. User interests are basic notion for so-called recommender sys-
tems (ref section 3.1.4.2).

User profiles are can be changed by explicit user actions (e.g. filling in the
forms that request certain information about user profile) or implicit user actions,
or example purchase of a product.

3.1.1.2 USAGE DATA

Usage data can be directly observed and recorded, or acquired by analyzing
the observable data. The amount of data that can be collected this way in the sys-
tem depends on the technical solution of that system. If the system is based on
HTML then it is only possible to record what pages and files have been requested
from the server, while in the case of Java applets, it is possible to record usage
data on the level of mouse clicks and movements. There are several types of in-
teraction that can be relevant for personalized systems. Typically, these are: selec-
tion actions, viewing times, rating, purchase and purchase connected activities on
e-commerce sites (ref section 3.1.1.5 on the price of personalization).

Typically, a personalized adaptation is not direct product of the collected da-
ta. First the data is processed in order to discover initial contents of a user or a
usage model. Usually, different kinds of patterns are acquired in the collected
data, for example: frequency of repeating events, situation-action correlation, ac-
tion sequences. Nevertheless, there are systems in which this information is util-
ized as user profiles.

32 Chapter 3 Personalization

The prerequisite step for any personalization technique (especially, recom-
mendation) that mines usage data is identification of a set of server sessions from
the raw data, which exists in web server log files. Ideally, user session gives an
exact accounting of who accessed the web site, what pages were requested and in
what order and how long each page was viewed. The two major difficulties in
usage preprocessing are due to [MOB00]:

§ Local caching; In order to improve performance and minimize network
traffic most of the web browsers cache requested pages. The result is that
when a user pushes the "back" button, web browser shows cached page and
the web server is not aware of the fact that the user accessed it again.
§ Proxy servers; Proxy servers provide intermediate caching level and create
more problems. In a web server log file, all requests from the same proxy
server have the same identifier, even when they come from different users.
One of the consequences of the proxy level caching is that during long time
period a lot of users can view a page that is a response to the single request.

The most reliable methods for user session identification from web server log
files are cookies and dynamic URIs with embedded session IDs. However these
techniques are not always available due to privacy problems and web server
limitations. Independent of the type of usage mining, in order to be successful,
systems that use them have to be publicly accepted. This is particularly impor-
tant for clique-based filtering systems.

3.1.1.3 CONTENT

Content is profiled, too. It is described by the set of attributes and their as-
signed specific values. Content has features that can be used in the personaliza-
tion process. These features can be: metadata (e.g. price, content author, producer,
location where some service is available and so on), but they can, also, be features
of the content itself (e.g. frequency of specific words in text, percentage of blue in
the image or rhythm of some audio composition).

One part of the metadata on content can be changed explicitly by users (for
example reviewing a movie with a “thumbs up” rating) or implicitly (for exam-
ple, by tracking the purchase of a specific product and enough purchases could
change the value of the attribute product_popularity from average to hot there-
by affecting other users’ experiences).

In the case of textual documents sets of attributes and their possible values
are governed by a controlled vocabulary. For each attribute, there has to exist a
consistent set of values used throughout the entire system. Sometimes creating
the controlled vocabulary means deciding on the preferred term and changing
anything indexed with a variation. This imposes the creation of a simple list of
synonyms to link the different terms together.

3.1 Personalized system 33

3.1.1.4 PERSONALIZATION RULES AND ENVIRONMENT DATA

The most important attributes are those that apply to both user and content
profiles. For example, if the site is intended for dog breeders, it is necessary to
know which breeds each user owns. There exist contents and products specific
for each breed, so this attribute will also need to be part of the content profile.
Common vocabulary on dog breeds for both user and content profiles (i.e. con-
trolled vocabulary for any domain) enables effective creation of personalization
rules.

Personalization rules are based on the working environment, but as much on
the quality of the resulting user experience. In the context of personalization, at-
tributes and their values represent glue that connects users with the content and
forms personalized user interface. Attributes of the content are compared to the
attributes of the user. Specific attribute values about the user are matched with
content meta-information to determine which content to display and how to pre-
sent it at any given time.

3.1.1.5 THE PRICE OF PERSONALIZATION

Recommender systems became irreplaceable resources for users that look for
intelligent ways for searching through large quantities of available information.
The basic requirement for user interfaces of these systems is to intelligently guess
user intentions or his interests and suggest contents consistent to those interests.
Ideally, this system should determine user needs by simple interpreting seque-
nces of user actions. The goal of most of the publicly available personalized sys-
tems is much more realistic: to understand simple user actions, including the
mouse movements during the web page investigation or bookmarking the web
page. Contemporary recommender systems are usually based on content ratings
that are given explicitly by the users. Along with the explicit the implicit interest
indicators are used.

When designing a personalized system technical solutions depend on various
factors, including: the level of user engagement and adequacy of the reward, pri-
vacy, convenience for the user and the consequences of false adaptation, and the
comparison between these loses and the benefits that recommendation brings.

I Explicit interest indicators

Explicit ratings are easy understandable, pretty precise and usual in everyday
life. Although ratings exist in the free text form (e.g. book critics) the most com-
mon and obvious way of rating is based on discrete scale (stars for restaurants,
rating from 1 to 10 in movie reviews). Ratings collected this way are used for fur-
ther statistical processing in order to obtain average, range, or distribution of the
values, etc. The gross of already implemented systems use this, explicit rating
approach. However, this approach has several drawbacks [CLAY01]:

34 Chapter 3 Personalization

§ User has to stop to enter explicit ratings therefore altering his normal pat-
terns of browsing and reading.
§ Ratings are subjective and dependent on users current information needs.
However, if given in free text form (annotations) [GOLD92], they provide
with the great amount of valuable information that can improve the quality
of the recommendation.
§ In most of the cases, though, entering the comments presents the addi-
tional effort for the user, which does not bring any benefit. This does not
mean that the systems that provide the adequate reward do not exist. Never-
theless, the user will not rate the content if he does not see any direct benefit
from the given effort. The question “who works, and who gets reward?”
[GRU87] gains on significance. Logic consequence is that the unrewarded
users continue to use the system, but stop rating the contents read.
§ In most of the currently exploited systems the number of rated contents is
much smaller than the number of examined.
§ Users give negative ratings very rarely.
§ The false recommendations are possible: content creators can produce
piles of good recommendations for their own materials and bad for their
competitors. Therefore, it is necessary that the recommender systems intro-
duce precautions discourage the “vote early and often” phenomenon.

From the previously indicated facts it is obvious that the explicit ratings,
though widely used, do not present so confident resource for recommendation as
it is usually supposed.

II Implicit interest indicators

Implicit rating is a rating that is obtained by a method other than obtaining it
directly from the user. Obvious advantages of this approach are:

§ They can be gathered for “free”.
§ Every interaction between user and the system (even the lack of it) can be
treated as a potential implicit interest indicator.
§ Many different types of implicit interest indicators can be combined for
more accurate rating.
§ Implicit interest indicators can be combined with explicit ratings for an
enhanced rating (countering, for example, “what I say is not what I want”
problem).

Three broad categories of implicit interest indicators can be identified: exami-
nation, retention and reference [OARD98].

3.1 Personalized system 35

Table 3.1 Categories of an observed behavior [OARD98]
Category Observed behavior

Examination Selection, duration, editwear, repetition, item pur-
chase or subscription

Retention Save a reference or an object (with or without com-
ments), (organized or not), print, delete

Reference Object->Object (forward, reply)
Portion -> Object (citation, hyperte xt link)
Object -> Portion (cut&paste, quotation)

Examination : Selection actions (e.g. following a link) can indicate that the user
is interested in a topic that can be reached by following that link; but it can also
mean that the user needs an explanation of unfamiliar terms used on the current
page (link to explanation) and so on. The disadvantage of this approach is lack of
negative feedback, which consists in the fact that if the user does not follow one
link when there exist other it does not mean that the user is not interested in that
topic or that he does not need an explanation. The examination duration is poten-
tial interest indicator, too. However, measuring the effective time of examination
is very difficult, since it is not possible to determine whether the user was in front
of the monitor and examined the selected page during that time. In most of the
cases examination duration is very bad interest indicator, but it can be used as a
proof that the user is not interested in certain topic . If the presentation duration
(and therefore maximum examination time) of a specific web page is shorter than
some threshold then it is most probable that that page is not interesting to that
user. Editwear and HEDO (history-enriched digital objects) [HILL94]) techniques
sequentially store statistical data on menu selections, number of spreadsheet cell
recalculations and time spent reading documents, in line-by-line manner sum-
ming over sections and whole documents. Repetition is another behavior from
the examination category and refers to the repetition of any interaction between
user and system; similar to the conventional library usage, where timestamps
with the date of borrowing/returning the book are used. Purchase and purchase
connected activities on e-commerce web sites are strong interest indicator; how-
ever, there is no 1-to-1 mapping between items purchased and interests of the
user, since customers can buy gifts for other people. Other activities like, for ex-
ample, putting the products into virtual shopping cart (for later purchase), par-
ticipating quizzes, product registration, … do not show user interests as much as
the act of buying itself.

Retention: This category groups all those behaviors that suggest some degree
of intention to make further use of an object. Bookmarks are one of the most com-
mon ways of indicating an interest. Unlike mouse clicks, that can also be uninten-
tional and hardly require any effort or investment, bookmarks are the result of an
intentional act, something that (especially if the bookmark is classified and put
into separate folder) represents an entry for inference process [RUCK97]. Printing

36 Chapter 3 Personalization

belongs to this category due to the permanence of the printed page, though users
can print documents and images to facilitate the examination process or to for-
ward them to other individual. Finally, this category is distinguished by the pos-
sibility of directly observing evidence of negative evaluations. When the reten-
tion is a default condition, as in the most of the e-mail systems, a decision of the
user to delete an object might support to an inference that the deleted object is
less valued than other objects that are retained.

Reference: This category groups all those activities that have the effect of estab-
lishing some form of link between two objects. Forwarding a message, for exam-
ple, establishes a link between the new message and the original. Similarly, tradi-
tional academic citations, as well as less formal hyperlinks in a web page or
complicated links between Usenet news articles, belong to the same category.

3.1.2 Rule-based personalization

Architecture of the framework supporting rule-based personalization is illus-
trated by figure 3.2. In this framework users and content meet at the user interface
layer through the process of personalization.

Underneath the user interface is the profil e layer. On this layer the specific val-
ues for the attributes are used to determine what content to present to which user
under what conditions. Here exist: user profile and content profile that are mat-
ched among them through the set of rules.

Vocabulary layer
Set of Attributes
Personalization Rules

User
attributes

Content
attributes

profile layer
Specific values

Personalization Rules
User

profile
Content
profile

User Interface Layer
Personalization

users contents

Vocabulary layer
Set of Attributes
Personalization Rules

User
attributes

Content
attributes

profile layer
Specific values

Personalization Rules
User

profile
Content
profile

User Interface Layer
Personalization

users contents

Figure 3.2Rule based personalization

The basic layer is the vocabulary layer, on which the assignment of attribute
values is regulated. On the vocabulary layer, attributes are defined and the set of
acceptable values (preferred terms) are specified. The relationships between at-
tributes are defined. Both, users and contents have their own attributes, but they
are coordinated to make sure that the higher-level profile information is syn-
chronized. The vocabulary is actually the set of attributes and values, while a
profile is merely one specific instance of the vocabulary.

3.1 Personalized system 37

Personalization rules leverage the profiles, attributes and values in order to
make the personalized user experience. The most effective rules operate on the
set of attributes as a whole, at the vocabulary layer. When user and content pro-
files share the same attributes, then it is possible to make rules work for all values
of those attributes. The example of one such rule could be: show all CD’s by
this user’s favorite artist. If the user profile has an attribute favorite
artist that shares the same values as the content profile’s attribute sung by,
then it is possible to form general-purpose rule that works for all values. If it is
not possible to do the profile-layer rules, then it may be possible to make a series
of rules based on each value: If the favorite_artist is Elvis, show CD’s
sung_by Elvis Presley. This would, however, become very inefficient. Since the
number of personalized systems and portals support this type of personalization,
the rules are usually categorized into:

§ Classification rules, which determine the conditions under which the con-
tents are changed. They refer to the current resources (for example, the ones
stored during the active HTTP session). One classifier can define multiple
classes. For example, CustomerLevel classifier defines that the user belongs
to the gold order in the airline loyality scheme (there are blue and silver,
more) if he/she collects more than 100 points.
CustomerLevel classifier:

CustomerLevel is Gold when
currentUserProfile.enterprise is greater then 100...

§ Action rules enable querying the resources that provide contents fulfilling
the given conditions as a result. For already illustrated airline company site,
example action rule Exclusive presents exclusive offers (items containing
keywords like tropical,…)
Exclusive action:

Select content whose Article.keywords includes value tropical,...

§ Connection rules are used to connect actions and classifiers. Depending on
user classification this rule calls on specific action to show specific contents.
Therefore, for example, low budget action can be shown to the blue order
member, and Exclusive to a Gold order one. Common name for these rules
is content targeters.
When CustomerLevel is Gold do Articles

3.1.3 Customization

Attribute values can be set manually (user or system administrator), and auto-
matically, using some software process. The way personalized system supports
setting profiles is very important, since being completely manual; it requires too
much work in maintenance process.

Customization is the simplest personalization approach, where users define
personalization rules; actually by explicit actions they change system contents
and layout. It is also called checkbox personalization [MUL00]. Eventhough a user
has the freedom to adapt an application to him, by choosing some of the avail-

38 Chapter 3 Personalization

able information sources, at the same time; he bears the entire adaptation load
since he has to state his interests clear and precise. This includes the fact that the
user understands and knows information (or at least its structure) that can be
found on the site, in order to be able to choose the right information from the set
of offered alternatives. If One user adapts the system to his personal needs then
there is no way for him to share these adjustments with another user, without
having corresponding administrative rights. Another user would have to go
through exactly the same procedure in order to get the same adjustments.

A number of sites receive information about user needs and their preferences
through HTML forms. Forms collect information that are rarely changed (e.g.
name and address of the user) and information that should be updated from time
to time (for example, the background color and selected information channels).

3.1.4 Recommendation

In everyday life it is often necessary to make choices without sufficient per-
sonal experience of the alternatives. Always when they are not sure about their
choices people rely on recommendations from other people, either by word of
mouth, recommendation letters, movie and book reviews printed in newspapers
or general surveys. Recommender systems assist and augment this natural social
process [RES97]. Recommender systems exploit ratings produced by the entire
user population in order to reshape an information space for the benefit of one or
more individuals [OARD97]. In a typical recommender system its users produce
recommendations (they state their preferences and opinions), which are collected
by the system and transferred to the users that need them. In some systems pri-
mary transformation is the aggregation process, while the value of other systems
lays in the ability to connect users that recommend to the ones that need these re-
commendations [RES97]. In the last years, interest into recommender systems
grew especially under the influence of personalized Internet applications. Cur-
rently a large number of e-commerce web sites use recommender systems in order
to personalize their contents and marketing campaigns. Even the biggest on-line
retailer Amazon.com uses the recommender technology.

Problem of recommending items from some fixed database has been studied
extensively, and two main paradigms have emerged [BAL97]:

§ Content-based filtering is an approach to recommendation which is used to
recommend items similar to those that a given user has liked in the past.
§ Clique-based filtering is a two step approach: first the users whose tastes are
similar to those of given user are identified, and then this user is recom-
mended the items they have liked.

In the following sections, in more detail, both generic approaches are de-
scribed; together with hybrid systems, which arose with the goal to use advan-
tages of those approaches, but at the same time for solving their disadvantages.

3.1 Personalized system 39

3.1.4.1 CONTENT-BASED FILTERING

Filtering interesting contents in order to produce recommendations has its
roots in the information retrieval (IR), and therefore uses a large number of tech-
niques from this area. The assumption that underlies this approach (in further
text it will be referred to as IR approach) is that the content of a page, not its lay-
out, interaction ability, or download speed, present user interests. In this manner,
for example, text documents are recommended based on a comparison between
their content and a user profile. Data structures used for representation of both
information sources are created by extracting features from their text (vector-space
model , refer to section 3.2.1). Very often some weighting scheme is used, which
gives high weights to discriminating words. After the pages that match user pro-
file have been picked, they can be presented to the user and feedback of some
kind elicited. If the user found some page relevant, weights for the words ex-
tracted from it can be added to the weights for the corresponding words in the
user profile. By being simple and fast, this approach improves the quality of re-
sults in IR applications. There are many alternative methods for weighting words
or other features from the text and for updating user profiles. This kind of system
has several disadvantages:

§ Primarily, only the shallow analysis of certain types of contents is possi-
ble. Existing methods for feature extraction are not applicable on contents
from some domains (such as movies, music…). Even textual documents rep-
resentations capture only certain aspects of the content, though there are
many others that could influence a user’s experience. In the case of web
pages, for example, IR methods completely ignore aesthetic qualities, all
multimedia objects (even text embedded in figures) and network factors, like
loading time, for example.
§ It is not possible to compare contents of different types, since comparison
is based on features, which are more physical than essential. For example, it
is not possible to compare the RGB specter density of some image and fre-
quency of appearing some word in text or average sound intensity of some
music sequence, even when they describe same event.
§ Additionally, it is not possible to filter out contents based on their quality,
style or point of view. For example, system is not able to differentiate well
from badly written article even when they refer to the same topic.
§ Problem of over-specialization is present in this area, too. If the system can
recommend only items that are very similar to the user profile, then the user
is restricted to seeing items similar to those already rated. This problem is of-
ten addressed by injecting a note of randomness, for example, the crossover
and mutation operations.
§ The user feedback is elicited, in order to model his interests.

40 Chapter 3 Personalization

3.1.4.2 CLIQUE-BASED FILTERING

Unlike IR approach that recommends contents based on their similarity with
user profile, this approach recommends to an active user all those contents that
similar users found relevant. Actually, instead of looking for contents similar to
user interests, users with similar interests are looked for. Usually, for each user a
set of similar neighbors is identified. These are the users whose previous content
ratings are strongly correlated to the ratings of the active user. Then, based on
those ratings it is predicted how much the new items will be interesting to that
active user. The only thing that is required to know about contents is their unique
identifiers. In general, this process consists of the following three steps [KOE01]:

§ Find similar neighbors; standard similarity measures (vector-space model)
are used to compute the distance between the active user’s representation
(such as a feature vector) and representation of the set of users.
§ Select a comparison group of neighbors; when the distances to other users
are available the set of closest users, the selection can be made in several ways.
If the selection is made based on a fixed threshold, then all users within
given distance are taken with the possible risk of obtaining too few or too
many closest users. The other type is selection of fixed number n of closest
users, where there is a risk that some of these may be poor matches or that
users are ignored that could add the quality of prediction.
§ Compute prediction based on (weighted) representations of selected
neighbors. Different approaches are possible to determine whether a par-
ticular neighbor is likely to be a good predictor. Most of these evaluations
are based on statistical measures, such as overall rating average of the per-
son, the person’s average deviation from the group mean and the correlation
of deviations between the target user and the neighbor.

This process is also known as collaborative [GOLD92] or social filtering
[SCHAR95] (in the text to come it will be referred to as approach). The term col-
laborative filtering was used for the first time in the description of the Tapestry
system and in that context it determines the process in which “people cooperate
to help one another perform filtering by recording their reactions to documents
they read”. The term in use, however, is not completely appropriate having in
mind that this approach has only few collaborative characteristics. This type of
filtering solves the limitations of the IR approach since the consequence of using
only the ratings of other users gives the possibility to work with different types
of contents and recommends user only those contents that are completely differ-
ent from the contents the user have already seen; the performance of the system
does not deteriorate with the growth of the user population, since there exist
number of users times more ratings. However, this approach introduces certain
problems of its own:

§ Problem of new content: if a new item is appears in the database there is no
way it can be recommended to a user until more information about it is ob-

3.2 Methods for detecting similarity 41

tained through another user either rating it or specifying which other con-
tents it is similar to.
§ Scarcity: since users have limited resources to experience contents (read ar-
ticles, see movies, and listen to music) the density of user ratings on items
decreases. Pit becomes less likely that the significant number of a user’s
neighbors will have experienced the item for which a prediction is being re-
quested [OCONN99].
§ Problem of a new user: the system does not contain any data on a user that
did not rate any of the contents. This means that the system is not able to
recommend new content to that user, since it does not recognize him i.e.
does not know his interests. The problem of a new user is extensively stud-
ied and number of techniques for solving it already exists. Some of these
techniques are described in [RAS02].
§ Problem of unusual interests: a user whose tastes are unusual cannot be
compared to the rest of the population, since there will not be any other user
who is particularly similar; this leads to poor recommendations.

It is obvious that these two approaches are complementary i.e. that the second
solves problems the first one brings and vise versa. Therefore a significant num-
ber of systems combine them in order to generate better and more useful recom-
mendations. As already indicated the similarity of contents and users, as well
among users themselves can be determined in a number of ways, by using IR
techniques, statistic, machine-learning, data mining and artificial intelligence
methods and so on. In the following sections some of the most frequently used
methods will be described, while a detailed review can be found in [KOE01].
Having in mind that the problem of this master thesis is the university itself a va-
riety of contents is practically unlimited. Still, there exist similarities in user be-
havior. Therefore, the focus will be on CF techniques and systems that use them.

3.2 Methods for detecting similarity

3.2.1 Vector-space model

Vector-space model from the area of information retrieval [SAL83] provides an
appropriate representation for documents based on their constituent words. This
model has been extensively studied and frequently used; it presents a basis of all
commercial web search engines and has shown to be competitive with alternative
IR methods. The assumption is that the content of the page can be presented by
only using the words contained in the text, while ignoring all mark-up tags, im-
ages and other of multimedia information. In this model both documents and
queries are represented as vectors, where: w is a web page representation, m is a
representation of user’s interests, r(w,m) is a function to determine the pertinence
of a web page given a user’s interests, and u(w, m, s) represents a function return-
ing an updated user profile m based on feedback information s on page w.

42 Chapter 3 Personalization

3.2.1.1 TFIDF

Assume some dictionary vector d, where each element di is a word. Each
document then can be presented by a vector w, where element wi is the weight of
the word di for that document. The figure 3.3, for example, shows a profile of a
document that contains text on cooking.

Figure 3.3 Example of a content based profile

If the document does not contain di then wi = 0. The words are then reduced to
their stems using the Porter algorithm [PORT80], words from standard stop list
are ignored (in English dictionary there are 571) and TFIDF weights are calcu-
lated: weight wi of a word di in the document W is given by:

)(
log)

)(
5.05.0(

max idf
n

tf
itf

wi ⋅+= ,

where tf(i) is the number of times word di appears in document W (the term fre-
quency), df(i) is the number of documents in the collection that contain word di
(the document frequency), n is the number of documents in the collection, and tfmax
is the maximum term frequency over all words in W. The experiments, described
in [PAZZ96], have shown that too many words lead to poor performance when
classifying web pages using supervised learning techniques; therefore, usually,
30 to 100 words are used. When, for example, first 100 words are picked w is
normalized to be of unit length, to allow comparison between documents of dif-
ferent lengths.

3.2.2 Cosine distance

As already indicated, vector representation is used for modeling web pages; it
is also utilized for modeling user interests, user profile m (that corresponds to a
query in retrospective IR system). In order to measure how well the document w
matches a given profile, the variant of standard IR cosine distance r(w,m) = w·m.
is used. Updating m also corresponds to a normal operation in the retrospective
IR system: relevance feedback [ROC71]. A simple updating method can be used:
u(w, m, s) =m+s·w.

3.2.3 Euclidean and Manhattan distance

If two vertices in n-dimensional space correspond to, for example, two users
represented with sets of their ratings Ra=(ra,1,ra,2 ,…,ra,n) and Ru=(ru,1,ru,2,…,ru,n) and

3.3 Methods for Knowledge Discovery 43

values for the weights for each dimension W=(wa,1,wa,2 ,…,wa,n) determined then
Euclidean distance and weighted Euclidean distance can be calculated using the
following equations:

() ()∑∑
==

−⋅=−=
n

1i

2
iuiaiaua

n

1i

2
iuiaua rrw),Rd(Rirr),Rd(R ,,,,,

Very often Manhattan distance is used: ()∑
=

−=
n

1i
iuiaua rr),Rd(R ,, .

3.2.4 Pearson correlation

Pearson correlation is used for measuring the level of existence of linear de-
pendency between two variables. Pearson correlation coefficient is derived from
linear regression model where following assumptions are valid: dependency is
linear, the errors are mutually independent, mean error value is equal to 0 and
variance is constant for every combination of independent variables. If all those
requirements are not fulfilled then Pearson correlation becomes inadequate simi-
larity indicator. GroupLens [KONS97] is the first system that used Pearson corre-
lation to weight user similarity and computed a final personalized prediction for
Usenet news articles. A final prediction is calculated as a weighted average of
deviations from the neighbor’s mean:

∑
∑

=

=
⋅−

+= n

u ua

n

u uauiu
aia

w

wrr
rp

1 ,

1 ,.
,

)(

,

where ar corresponds to the average rating of the active user, pa,i represents the
prediction for the active user a for item i, n is the number of neighbors and wa,u is
the similarity weight between the active user and neighbor u is defined by Pear-
son correlation coefficient:

ua

m

i uiuaia
ua

rrrr
w

σσ ⋅

−⋅−
= ∑ =1 ..

,

)()(

.

3.3 Methods for Knowledge Discovery

3.3.1 Data Mining

Data Mining is a process of extracting information or knowledge from the da-
ta set with the goal of decision making. Last few years this area has become very
popular as a consequence of existence enormous amounts of data. Information
and knowledge discovered during the data mining process can be used in differ-
ent areas, from scientific to market analysis. Unlike information retrieval and in-
formation access techniques, which have the goal of helping users find docu-

44 Chapter 3 Personalization

ments or data, the goal of data mining is to discover useful knowledge by analyz-
ing correlations that exist in data by using prosperous data mining techniques.
Knowledge that can be collected during a data mining process includes: concept
description, a ssocia tion rules, classification and prediction and clustering .

Very often data mining is referred to as knowledge discovery in databases
(KDD), even though this technique is only a part of the knowledge discovery
process that includes the following steps:

§ Data cleaning: in this step dirty data is cleaned. The dirty data includes: in-
complete data (attributes or attribute values missing), noise (attribute values
that are not correct and/or not expected), inconsistent data (discrepancy be-
tween attributes and their values).
§ Data integration, where data from different data sources is combined.
Among those sources there are numerous databases, with different contents
and data formats. Inconsistency between formats leads to redundancy and
disagreements between attributes and data.
§ Data transformation; data is transformed into corresponding and agreeable
formats using methods like aggregation, normalization and equalization.
§ Reducing the amount of data, the amount of data is reduced, but at the same
time retains integrity of the original data set. Different strategies are used,
for example: data cube aggregation (i.e. sum() and min()), dimension reduction
(filtering out irrelevant data), data compression (substitution of data values
with the encoded data), precision reduction (substitution of data values with
alternative smaller representations) and generaliza tion (substitution of data
values on lower conceptual level by values on higher).
§ Data mining – intelligent pattern recognition.
§ Pattern evalua tion – identification of interesting patterns that represent
knowledge, using techniques that include statistical analysis and query lan-
guages.
§ Knowledge representation – discovered knowledge is represented using
techniques for data visualization and knowledge representation, for example
charts, maps, tables and rules.

The first four steps are often referred to as preprocessing or data preparation.

3.3.1.1 CONCEPT DESCRIPTION

Very often the condensed reviews of derived knowledge, which cannot be ob-
tained by simple quotation or data manipulation, are needed. For this usually the
description of concepts is utilized. This technique includes:

§ Description analysis that as a result provides short review of data set, and
§ Discrimination analysis that as a result gives a revised comparison of two
data sets.

3.3 Methods for Knowledge Discovery 45

During the concept description process data, important for the execution of
the given task , is generalized and summarized in order to transfer it from lower
to higher conceptual level, and at the same time, in order to increase comprehen-
sion it is compressed by using smaller number of description terms. Data gener-
alization is possible to do by using data cubes or attribute-oriented induction (AOI).
AOI approach includes attribute generalization or their removal.

3.3.1.2 ASSOCIATION RULE DISCOVERY

This is the process of discovering interesting correlations in large datasets.
Process of making marketing decisions or web site design can be considerably
eased up if, for example, interesting relations in the large set of business transac-
tions is identified. Typical example of market basket analysis that analyzes cus-
tomer’s buying hab its by discovering associations between articles that he
bought. The following example illustrates the rule discovered among transac-
tions in computer book store and denotes that the customers that buy books on
operating systems at the same time buy books on Linux operating system:

Operating System => Linux [support=4%, confidence=48%]

Support of 4% denotes that in the 4% of all transactions books on operating
systems and Linux were purchased together.

Confidence of 48% determines that the 48% of customers that bought the book
on operating system bought the book on Linux, too. Association rules are consid-
ered only if they satisfy two user defined requirements: minimum support
threshold and minimum confidence threshold. The association rule discovery is a
two step process:

§ First step is the discovery of all frequent itemsets that fulfill min-δ, prede-
fined support value;
§ And then follows the discovery of association rules that fulfill the min-α,
predefined value for confidence, from the frequent itemsets discovered in
the first step.

This method is often referred to as one-dimensional association rule discov-
ery. Beside this one, there are multidimensional, multi-level, quantitative (dis-
tance lead) and boundary-lead association rule discovery.

3.3.1.3 CLASSIFICATION AND PREDICTION

These two techniques are used for data classification and trend prediction. In
the classification process the class labels are determined while during the predic-
tion process the continual functions are discovered. Classification is a two step
process that includes:

§ Learning process, during which the model is used to analyze learning set.
This set consists of training tuples and items randomly selected from the

46 Chapter 3 Personalization

population. Having in mind that the class labels are assigned to every possi-
ble tuple prior to the learning process it is often referred to as supervised
learning.
§ Classification: the learned model is used for classification. The accuracy of
the classification process is estimated by using randomly selected labeled
items (test set). Predicted labels are compared with the assigned and the ac-
curacy is defined as a percentage of test examples that are correctly classi-
fied. If the percentage is satisfying then the model can be used for classifica-
tion of new items. If it is not, the model is adapted until it reaches the
acceptable prediction accuracy.

The most common data classification techniques are:

I k-Nearest Neighbor

Each item from the learning set is interpreted as a vertex in n-dimensional
item space (for example, the ratings of the active user). This algorithm classifies
unclassified items by detecting its k nearest neighbors, based on the chosen met-
rics. This is a three step process:

§ The weights for all users are determined based on their similarity with the
active user.
§ For the specific item the subset of the user population is selected in order
to be used in the prediction process.
§ The ratings are normalized and the prediction value is calculated as a
weighted average of dimensions (for example ratings) of the selected
neighbors.

For nearest neighborhood determination Euclidean or Manhattan distance
can be used. However, the most often Pearson correlation is used. Unclassified
item is assigned to the most commonly used class in the k nearest neighbors.

This is a slow learning technique and it requires efficient indexing techniques.

II Decision Trees

These are the trees whose internal nodes represent conditions, and leaves cor-
respond to the classes of data. The conditions in the internal nodes usually have a
small number of possible outcomes. Every branch in the tree corresponds to the
decision that can be made during the condition evaluation. If the branching
through the tree is performed based on the results of every test, the leaf that con-
tains the label for the class for the given item is reached. The decision trees can
very easily be converted into classification rules by using if-then construction.

The figure 3.4 shows the simple example decision tree. Let assume that each
item is described by the set of attributes: gender, age and hair color. After the

3.3 Methods for Knowledge Discovery 47

training process column gender should contain three possible values: male, fe-
male and undefined; the same works for the hair color column: black, gray and
undefined. The following decision tree is formed for hair color prediction.

Figure 3.4 A sample decision tree

III Bayesian Classification

This is a statistic method for item classification and it is based on Bayes theo-
rem from the probability theory. Using this method the probability that the item
belongs to the given class can be predicted.

Bayes theorem [HAN00]: Let X be a data sample whose class label is unknown.
Let H be some hypothesis, such that the data sample X belongs to a specified
class C. P(H|X) is the posterior (a posteriori) probability, of hypothesis H condi-
tioned on sample X. Suppose that X is round and sweet, and the hypothesis H is
that X is a cake then P(H|X) reflects confidence that X is a cake if X is round and
sweet. In contrast P(H) is the prior (a priori) probability; for example, this is the
probability that X is a cake regardless of how the data sample looks. Similarly
P(X|H) is the posterior probability of X conditioned on H. That is, it is the prob-
ability that X is round and sweet given that we know that it is true that X is a
cake. Bayes theorem is

)(
)()|(

)|(
XP

HPHXP
XHP

⋅
=

and it is useful since it provides a way of calculating the posterior probability,
P(H|X), from P(H), P(X) and P(X|H). There are two methods of Bayesian classifi-
cation:

§ Naive Bayesian classification is based on the assumption that the value of
one attribute of the given class is independent from the values of others.
§ Bayesian belief networks allow mutual dependencies between sets of attrib-
utes.

48 Chapter 3 Personalization

Bayesian classifier predicts that unclassified sample X=(x1,x2,…,xn), belongs to
the one of m classes C1,C2,…,Cm having the highest posterior probability, condi-
tioned on X i.e. if and only if P(Ci|X)>P(Cj|X) for 1=j=m, j?i. As P(X) is constant
for all classes only P(X|Ci)·P(Ci) need be maximized. Probability that the sample
belongs to the class Ci is estimated to P(Ci)=si/s, where si is the number of training
samples of class Ci, and s is the total number of training samples. Given data sets
with many attributes it would be extremely computationally expensive to com-
pute P(X|Ci). Therefore the assumption on conditional class independence is
made. It presumes that the values of attributes, for the given class, are independ-
ent from one another thus)|()|(

1∏ =
=

n

k iki CxPCXP . The probabilities P(x1|Ci),
P(x2|Ci), …, P(xn|Ci) can be estimated from the training samples, where:

§ If the attribute Ak is categorical, then P(xk|Ci)=sik/si, where sik is the number
of training samples of class Ci having the value xk for attribute Ak, and si is
the number of training samples belonging to Ci.
§ If Ak is continuous-valued, then the attribute is typically assumed to have
a Gaussian distribution.

In order to classify an unknown sample X, P(X|Ci)·P(Ci) is evaluated for each
class Ci. Sample X is then assigned to the class Ci if and only if P(X|Ci)P(Ci)>
P(X|Cj)P(Cj) for 1=j=m, j?i. In theory, compared to other classifiers Bayesian clas-
sifiers have the minimum error rate. Various empirical studies have shown that
this type of classifier can be compared to decision trees and neural networks in
some domains.

Bayesian belief networks: These networks are used if there exist dependencies
between variables and they specify joint conditional probability distributions.
They provide a graphical model of causal relationships, on which learning can be
performed. In this direct acyclic graph each node represents a random variable,
while each arc represents a probabilistic dependence. If an arc is drawn from
node Y to a node Z, node Y is a parent or immediate predecessor of Z. Each vari-
able is conditionally independent of its non-descendents in the graph, given its
parents. The variables may correspond to actual attributes given in the data or to
hidden variables believed to form a relationship. The figure 3.5 shows a simple be-
lief network with six Boolean variables. The arcs allow a representation of causal
knowledge. For example, having lung cancer is influenced by person’s family
history of lung cancer, as well as whether or not the person is a smoker. Further-
more, the arcs show that the variable LungCancer is conditionally independent of
Emphysema, given its parents. This means that once the values of FamilyHistory
and Smoker are known, then the variable Emphysema does not provide any addi-
tional information regarding LungCancer. The second component defining a be-
lief network consists of one conditional probability table (CPT) for each variable and
specifies conditional distribution P(Z|Parents(Z)). Figure 3.5 b shows CPT for
LungCancer, containing the values for the conditional probability for this variable
given each possible combination of values of its parents. For example:

3.3 Methods for Knowledge Discovery 49

P(LungCancer =’yes’|FamilyHistory=’yes’,Smoker=’yes’) = 0.8

The joint probability of any tuple (z1,…,zn) corresponding to the variables or
attributes Z1,Z2,…,Zn, is computed by))(|(),...,(

11 ∏ =
=

n

i iin ZParentszPzzP . A node
within the network can be selected as an output node, representing a class label
attribute. There may be more than one output node. The classification process,
rather than returning a single class label, can return a probability distribution for
the class label attribute that is, predicting the probability of each class.

a) b)

Family History

Positive Xray Dyspnea

Lung Cancer Emphysema

SmokerFamily History

Positive Xray Dyspnea

Lung Cancer Emphysema

Smoker

 FH,S FH,¬S ¬FH,S ¬FH,¬S

LC 0.8 0.5 0.7 0.1

¬LC 0.2 0.5 0.3 0.9

Figure 3.5 Simple example of a Bayesian belief network [HAN00]

The network structure may be given in advance or inferred from data. The
network variables may be observable or hidden (missing values, incomplete data) in
all or some of the training samples. The network training process consists of
computing the CPT entries. When the network structure is given and some of the
variables are hidden, then a method of gradient descent can be used to train the
belief network (a detailed can be found in [HAN00]).

Beside Bayesian belief networks there are neural networks that use backpropa-
gation, generic algorithms, based on a natural selection paradigm as a learning
method, fuzzy sets...

3.3.1.4 CLUSTERING (SEGMENTATION)

Cluster is a collection of mutually similar objects, while segmentation (cluster-
ing) is a process of grouping data into segments. Unlike the classification process,
where class labels for every object are given in advance, in clustering these class
labels are not previously known. Hence, this method is often referred to as unsu-
pervised learning. Usually, when this data mining model is used it is not obvious
neither what is looked for nor what can be found. The goal is to discover a distri-
bution and correlations that exist among objects by identifying crowded and
scarcely populated regions. Segmentation is used in the cases where large
amounts of data are available, and that data contains highly organized logical
structure and numerous attributes. The results of the clustering process enable:

50 Chapter 3 Personalization

§ Relationship visualization: One of the great advantages of this method is the
simplicity of generating the graph or map from the model. A visual display
enables the user or an operator to catch the similarities that exist among data
records, on the first glance.
§ Emphasizing anomalies: Graphs, also, simplify noticing the records that do
not fit into model.
§ Creating samples for other data mining action: A number of data mining algo-
rithms, for example decision trees, and during the analysis requires a num-
ber of cases. Off course, if the number of cases is very large decision trees be-
come immense, therefore the clustering is used to separate cases that will
later be used for decision tree generation.

Unlike decision trees, this method is difficult to interpret and requires a lot of
experimenting, in order to provide clusters that bear some meaning. The basic
disadvantages of this algorithm are that the final results of this process are diffi-
cult to understand, since there are no rules that describe them, similar to those
that exist in decision trees, as well as the difficulties that appear while comparing
data of different types. Due to this quality this algorithm is very rarely used for
the discovery of information, which later will be used directly in the decision
making process. More often it is used to generate groups of records that can later
be studied using some other methods, like decision trees, for example. The most
popular clustering techniques are:

I Partitioning

Using this method the set of n objects is partitioned into k groups that are re-
ferred to as partitions where each one of them represents one cluster. It is as-
sumed that the number of partitions is smaller then the number of objects, that
each partition contains at least one object and that each object has to belong to
some partition. The process is iterative and starts by initial partition creation, fol-
lowed by the cleaning process that utilizes iterative relocation techniques (IRT).
IRT improves the quality of partitions by moving objects from one group to the
other. Different heuristic methods are used in order to avoid detailed pass
through all possible partitions, including:

§ k-means method: each cluster is represented with the average value of all
the cases that belong to that cluster. This algorithm works only with numeric
values.
§ k-medoids method: each cluster is represented by the case that lies nearest to
the center of that cluster.
§ k-modes method: extends k-means method so that it can cluster categorical
data types, too.
§ k-prototypes method: is a combination of k-means and k-modes method,
which enables clustering of hybrid data types [HUA98].

3.3 Methods for Knowledge Discovery 51

K-means is one of the most frequently used clustering methods. Almost every
commercial data mining application implements some of the variations of this al-
gorithm. The basic qualities of this algorithm are [HUA98]: it has to be efficient
while processing vast data sets, usually ends in the local optimum and formed
clusters are convex. Basic disadvantage of k-means clustering algorithm is that the
value of variable k has to be known in advance. There are lot of variants of this
algorithm, which differ among themselves in a way of initial cluster determina-
tion and similarity measuring function.

II Hierarchical clustering

Hierarchical methods enable hierarchic decomposition of the given set of
cases using:

§ Division, the start assumption is that all cases lie in the same cluster, and
then that cluster is divided into smaller parts until the condition of the end is
reached. This is a top-down approach.
§ Accumulation, the start assumption is that every object is one cluster, and
then similar clusters are joined together until the condition of the end is
reached (bottom-up approach).

III Clustering based on the distribution density

These methods discover clusters by expanding the start cluster until the
neighborhood density overtakes a certain threshold. If the start cluster is c, the
density threshold requires that each object’s neighborhood (predefined radius)
contains minimum number of cases. Therefore, these methods may discover clus-
ters of various forms and may be used to measure the growth of the cluster when
automatic or interactive analysis is used.

There are many other different clustering techniques, including grid-based
methods, model -based methods, and many other hybrid methods.

3.3.1.5 MICROSOFT CLUSTERING

This algorithm is based on the Expectation-Maximization (EM) algorithm. It is a
two step method. In the first step (E) the cluster membership of each case is de-
termined; while during the second step (M) the parameters of the models are re-
estimated using this cluster membership. Microsoft Clustering is similar to k-means
method, which uses randomly selected records for cluster centers. In the cluster-
ing process records are represented as vertices in multidimensional space, in or-
der to determine distances between them. The assumption is that the similar re-
cords are situated in the neighborhood. Similar to the countries on the map,
clusters have boundaries that surround cases that reside in the same cluster.
Model generated by the clustering algorithm, also contains pointers to coordi-

52 Chapter 3 Personalization

nates that locate the case in the space. This coordinates point to other records that
belong to the same segment.

§ Randomly selected cases are used as start points. If k is assigned value 7,
then seven points are randomly selected and are temporarily assigned clus-
ter means.
§ Assign cases to each mean using some distance measure.
§ At the same time compute new means based on members of each cluster
This is, usually, achieved by simple computation of a mean value for the
cluster and taking the vertices that are the nearest to that mean value for
new cluster means.
§ This procedure is cycled until convergence.

Figure 3.6 A simplified display of few iterations of MC algorithm

Since the initial values for the cluster means are randomly determined, it is
very probable that when same data is reprocessed completely different clusters
are generated. Due to the continual adjustment of cluster means, cluster bounda-
ries are also shifted. The cluster boundaries connect points that stand halfway the
cluster means distance. As a consequence of constant cluster boundaries shifting
the cases that once belonged to one cluster can be found in the other. Figure 3.6
displays a few iterations of the EM algorithm for a one-dimensional dataset. The
data in each cluster is assumed to have a Gaussian distribution. After each itera-
tion, clusters’ means are shifted. The basic distinction between EM and k-means
algorithm is that EM has no strict boundary among clusters. A case is assigned to
each cluster with a certain probability.

Previously described procedure is very simple and easy to understand when
attribute values are easy measurable and mean values are possible to calculate
and that way cluster membership determined i.e. numeric values. Usually, the
situation is completely different. People find similarities between objects without

3.3 Methods for Knowledge Discovery 53

using any mathematical calculations. Therefore, the method of translating these
subjective comparisons into numbers has to be found in order to prove similarity.
The data in databases is often stored in formats that are not easy to map into
numbers, for example colors, geographic locations, automobile makes, lan-
guages, animal species. One possible solution is to connect each of the attribute
values with one numeric value and that way assign it a vertex in space; this ap-
proach creates new problems, though. Algorithm does not measure distances be-
tween conceptual values. Let’s take, for example, that attribute values are: mam-
mals, fish, reptiles, birds and insects; computers do not understand that the
chimpanzees resemble to people and not to bats, and that yoghurt resembles
more to an ice cream than a cake. These differences should be assigned higher
weights than those that exist between eye colors of different species; hence, algo-
rithm will never be completely accurate since it does not understand what we
find more similar in given context. There are four factors that influence the clus-
tering process:

§ Ranks, arrange values into ascending or descending order, but it gives no
information on relative object distance. For example, Marko can be the old-
est in the group, and Darko second oldest, but there is no information on
that how much Marko is older than Darko.
§ Intervals show distance between two dimensions. If, for example, Marko is
21 years old, and Darko 19, then interval value shows that Marko is two
years older than Darko.
§ Measures are different from rankings and intervals in the fact that they
show absolute values. People should be cautious not to mix intervals and
measures, though it seems rather logical, since it can lead to wrong conclu-
sions. For example, if Marija’s weight is 60 kg and Olivera’s 40 it does not
mean that Olivera is 1.5 times slimmer than Marija.
§ Categories; similar objects are grouped into same categories. CDs can, for
example, be computer and music CDs, and latter can again be categorized
based on genre and artist. Differences between categories can not be meas-
ured nor assigned any values. Actually, it is not possible to say that some
software CD is better than a CD with popular music, for example.

There are many different ways to determine object closeness or degree of simi-
larity. Methods for object closeness determination are: distance between points in
space, record overlapping and angle between vectors in space.

§ Measuring distance between points in space is the most common way of de-
termining similarity. All attributes of the case are assigned numeric values
that represent their coordinates in space along one or more axes. Usually
Euclidean distance is measured (reference section 3.2.2).
§ Measuring angle between vectors that represent objects in space is used to
determine similarities between objects that are not obvious on the first
glance. Sometimes, the relations that exist between attribute values of the

54 Chapter 3 Personalization

case are used as a value for that case. Actually, when it is necessary to know
relationship between cases and their attributes, it is much more efficient to
measure the angle between vectors that start in coordinate centre and end in
the point, whose coordinates are case attribute values then to measure dis-
tance between those points in space.
§ When the cases are consisted of mainly categorical variables, the best op-
tion always seeks similarity and groups cases based on the number of same at-
tributes. The process is, off course, a bit more complex if there are a number
of fields, which cause that the differences in attribute values become less
significant. As the number of differences decreases this process becomes
more complex. To stress this difference some of the attributes are assigned
higher weights. If, for example, attribute that shows the height of a person
has four possible values: short, average, tall and giant it may happen
that a large number of people, with a broad range of heights fall into an av-
erage category, since the attribute height is not represented in a suitable
way. This situation makes the attribute height loose its significance. One
possible solution to this problem is to map attribute values into broader clas-
sification by multiplying each height by 10, so that the differences between
them become visible, i.e. the real 7cm difference becomes 0.7m.

The majority of clustering must load all the data points into memory, which
can cause serious scalability problems when processing a large dataset. Microsoft
Clustering algorithm uses a scalable framework, which selectively stores impor-
tant portions of the database and summarizes other portions. The basic idea is to
load data into memory buffers in chunks, and based on the updated data mining
model, to summarize cases, that are close together as Gaussian distribution, the-
reby compressing those cases. When applying this method algorithm needs to
scan the raw data only once.

3.3.2 Text mining

Text mining and data mining are parts of one much broader field, known as in-
formation mining . The basic difference between these two fields is in the type of
information mined. Eventhough textual information have some implicit struc-
ture, basically they are unstructured.

The significance of this field rapidly grows, since the enormous amount of
knowledge lays in textual documents. The accessibility of those documents in-
creased drastically with the appearance of web. Hence, the constant growth of
amount, and alternation of web text features, requires further research. Unlike
the techniques for information access and retrieval, that help users satisfy their
information needs, the goals of text mining are detection, discovery, and deriva-
tion of new information from large collections of textual documents [CHAN01].
In order to discover new knowledge the relations that exist among texts in the

3.3 Methods for Knowledge Discovery 55

collection are detected and examined. One of the basic goals of text mining is as-
sociation rule discovery, trend and event detection.

3.3.2.1 ASSOCIATION RULES

Similar to the association rules discovery in data mining, objective measures
are support and confidence. The support for the rule X⇒Y indicates the number
of documents in the collection that contain both, X and Y. The confidence for the
rule denotes the percentage of documents in the collection, which when contain
X they contain Y, too. Association rules are derived from the text collections by
following given algorithm:

Let W’={w1,w2,…,wm} specify a set of keywords in the document collection
T={t1,t2,…,tn}. The fact that each ti is associated with a subset W’ can be repre-
sented with ti(W’). Let W⊆W’, then the set of all documents t in T that conform to
W⊆t(W’), is the covering set for W and is referred to as [W]. In other words [W] is
the set of all documents from T that conform to the rule that each document from
[W] contains all words from W as a part of it’s keyword set. Thus, if W⊆W’ then it
certainly holds that [W]⊇[W’].

Let R: W=>w be an associative rule given as implication, where W⊆W’ and
w∈W’-W. The support S for the rule R in the collection T is defined by the equa-
tion S(R,T)=|[W∪{w}]|, which denotes that S is an exact number of indexed do-
cuments in T that contain keywords from W∪{w}. The confidence C for the rule R
in the collection T is defined by: () { }[]

[]W
wW

TR,C
Υ

= , and is equal to the conditional

probability that the text is indexed by the keyword w, if it is indexed by the set of
keywords W. For the association rule R discovered in the collection T, it is said
that it holds the support δ and the confidence α if the statements S(R,t)≥δ and
C(R,T)≥α are true, and it is represented with W ⇒ w S(R,T)/C(R,T).

3.3.2.2 TREND DISCOVERY

Trend is a constant demonstration of the certain pattern over time. The detec-
tion of sequential patterns is used for trend discovery in the database transac-
tions. In the document collections trend can be identified by observing the tem-
poral changes in the frequency of appearance of the specific phrases.

Let W be the set of all keywords, P – the set of all phrases, and F – the set of
all fields in the document collection T, where each specific word is represented
by (wi), where wi∈W; the phrase is represented by pi=(w1,w2,…,wk) (or
<(w1)(w2)…(wk)>), pi∈P, which actually means that it is one word sequence; and
the field is represented by f i, where f i ⊆ W∪ P, and textual field is a set of words
and/or phrases. Then all the documents in the collection T={t1,t2,…,tn} can be rep-
resented as ti={TSi, f1,f2,…,fm}, where TSi indicates the time when the document ti

56 Chapter 3 Personalization

was inserted into database (timestamp) and f i∈F. Algorithm for trend discovery
includes three major steps:

§ Identification of frequent phrases,
§ Generation of phrase history,
§ The discovery of patterns that resemble to the actual trend.

3.3.2.3 EVENT DETECTION

Event detection is identification of data in the data array that correspond to
new or earlier unidentified events. There are:

§ Retrospective detection, which refers to the process of identification of ear-
lier unidentified events from the cumulative data collection. Usually, two
different techniques are utilized: detection of rapid changes in the term dis-
tribution over time and using lexical similarities and temporal closeness of
the text documents.
§ On-line detection identifies new events from the arriving data. The majority
of the algorithms are based on the threshold models, which use the follow-
ing parameters: detection threshold, grouping threshold and frame length.

3.3.3 Web Mining

Web mining is a process of application knowledge discovery techniques for
pattern recognition in the data that originates from web. It includes: web content
mining, web usage mining and web structure mining .

3.3.3.1 WEB CONTENT MINING

Web content mining is a process of automated pattern discovery in the docu-
ment contents on web. During this process textual and graphic contents on the
web are analyzed. Analysis of textual contents on the web is very similar to the
text mining process (refer to section 3.3.2).

3.3.3.2 WEB USAGE MINING

Web usage mining is a process of automated usage pattern detection, from
huge collections of web server access logs, which are constantly generated by
web server. By analyzing this data access habits of web service users can be dis-
covered and they can be used for improving: web site structure, ways of product
advertising and marketing decisions. Data can be collected from various sources
including the web server itself, proxy servers and the clients.

3.3.3.3 WEB STRUCTURE MINING

Web structure mining is a process of automated detection of hypertext struc-
ture model. This is a process of analyzing structured data used for description of

3.3 Methods for Knowledge Discovery 57

web contents. Structured information can have inter-page or intra-page structure.
Information on inter-page structure can be analyzed by following hyperlinks. For
representation of this information graph structure is commonly used, where
nodes symbolize pages, and branches hyperlinks.

3.3.3.4 DATA PREPARATION FOR WEB MINING

Data has to be prepared for the analysis, which can use a number of different
techniques: statistical analysis, association rule discovery, clustering, classifica-
tion or detection of sequential patterns. Data cleaning process is site-specific and
involves tasks such as merging log files from multiple servers, removing graphics
file accesses, and parsing of the logs. For further use in the personalization proc-
ess it is necessary to identify the user and the set of user sessions (refer to section
3.1.1.2). For web site using cookies or embedded session IDs, or are situated on
Java -enabled web servers this identification is trivial.

Data
Cleaning

User/Session
Identification

Pageview
Identification

Path
Completion

Episode
Identification

Server Session
File

Episode File
Usage

Statistics
Site Structure
and Content

Raw Usage
Data

Data
Cleaning

User/Session
Identification

Pageview
Identification

Path
Completion

Episode
Identification

Server Session
File

Episode File
Usage

Statistics
Site Structure
and Content

Raw Usage
Data

Figure 3.7 Summary of preprocessing steps

Since the HTTP is a stateless protocol, as a result of one user action several file
requests are executed (HTML, images, audio etc.) Set of page files that server re-
turns as a response to a single user action represents a pageview. After session
identification log file has to be cleaned or transformed into the list of relevant
pageview. Cleaning the server log files involves removal of all redundant informa-
tion on file access and leaving just one entry for one pageview. During this step
site structure and content are processed. All, the pages that contain frames and
dynamically generated pages (that use the same template name for more than
one pageview) are handled. It is necessary to check whether all extraneous refer-
ences (such as image or sound files) are correct, since the recommendation engine
should not provide dynamic links to “out-of-date” or non-existing pages (web
structure mining). Content preprocessing consists of converting the text, image,
scripts, and other multimedia files into forms, which can be used in the web usage
mining process. Usually, this consists of performing content mining such as classi-
fication or clustering which gives results that can later be used to limit the dis-

58 Chapter 3 Personalization

covered patterns to those containing pageviews about certain subject or class of
products.

One of the consequences of caching on both client side and proxy server is
that the data in log files is usually incomplete; hence, several simple heuristic
methods for path completition are obtained (detailed description can be found in
[COOL99]). Dynamic contents with unique URIs for each server session cannot
be cached on proxy level; however, any type of content can be cached at the cli-
ent level, where the amount of caching is set by the client-side browser.

Each user session in the user session file can be viewed in two ways:

§ As one transaction (episode) that contains several pageviews, or
§ As a set of more transactions, where each of them consists of one page ref-
erence.

The goal of episode identification is a dynamic creation of meaningful clusters
of references for each user, based on an underlying model of user’s browsing be-
havior (for more detailed description, refer to [COOL99]).

Finally, the session file can be filtered by removing irrelevant transactions and
low-support URI references (URIs that do not appear in a sufficient number of
sessions). This type of support filtering can be useful in eliminating noise from
the data, and it can also be understood as a type of dimensionality reduction for
clustering algorithms that use URIs, appearing in the session file, as features.

3.4 Sample academic recommender systems

Even though the beginning of a commercial boom was in the late nineties the
idea on personalized, user-adaptive systems appeared much earlier (refer to
[KOB01]). In these first personalized systems, the user modeling was performed
by the application system, and often no clear distinction could be made between
system components that served user modeling purposes and components that
performed other task. In the end of 1990s, the value of web personalization was
increasingly recognized in the area of electronic commerce. Web personalization
allows product offerings, sales promotions, ad banners, etc. to be targeted to each
individual user. The relationship with users on the Internet migrates from
anonymous mass marketing and sales to 1-to-1 marketing. The most important
characteristic of most contemporary systems is their client-server architecture.
User modeling systems are not functionally integrated into the application, but
communicate with the application through inter-process communication and can
serve more than one user (client) applications at the same time. Client-server ar-
chitecture provides a number of advantages compared to embedded user modeling
components [KOB01]:

3.4 Sample academic recommender systems 59

§ Information about the user is stored in a central or virtually integrated re-
pository and put to the disposal of more than one application at the same
time.
§ Information on user acquired by one application can be employed by
other applications.
§ Information about users is maintained in non-redundant manner. This
way the consistency and coherence of information gathered by different ap-
plications can be achieved easier.
§ Information on user groups, either available as stereotypes or dynamically
calculated as user group models can be maintained with low redundancy.
§ It is possible to apply different methods and tools for system security,
identification, authentication, access control and encryption for protecting
user models in user modeling servers. There are a lot of company privacy
policies, industry privacy norms and conventions, national and international
privacy legislation, and privacy-supporting software tools and service pro-
viders.
§ Additional user information that is dispersed across the organization (e.g.
demographic data from client databases, past purchase data from transac-
tional systems, user clustering from marketing research) can be integrated
more easily with the information in the user model repository. To access ex-
ternal data, ODBC interfaces or native support for a wide variety of data-
bases are a must. Due to legacy business processes and software, external
user-related information often continues to be updated in parallel to the e-
commerce application and therefore needs to be continually integrated at rea-
sonable costs and without impairing the response time.

However, these systems also have some disadvantages; for example, neces-
sity of a network connection and potential line of failure.

The last three sections contain detailed descriptions of all contemporary types
of personalization and some of the methods for knowledge discovery from exist-
ing and data collected with the goal of automated recommendation generation,
as “the most intelligent” means for the personalization. The most intelligent in a
sense that proportionally from the minimum input data, it produces high quality
adaptations. Therefore, a number of experimental and commercial systems im-
plement this type of personalization. In the remainder of this chapter some of
them are described.

3.4.1 WebWatcher

WebWatcher [JOA97] is one of the first recommender systems. It appeared as
an “intelligent” response to keyword-based search engines and represents a typi-
cal content based system. It was developed on Carnegie Mellone University in
Pittsburgh, 1995.

60 Chapter 3 Personalization

WebWatcher acts as a learning apprentice observing and learning from users’
actions. Over time WebWatcher learns to acquire greater expertise for the parts of
the web that it has visited in the past, and for the types of topics in which previ-
ous visitors have had an interest. WebWatcher is implemented as a server, on a
separate workstation on the network and acts similar to proxy. Before returning a
page to a user it makes three modifications: adds the WebWatcher command list
on the top of the page; each hyperlink in the original page is replaced by a new
URI that points back to the WebWatcher server; if WebWatcher calculates that
any of the links on this page is strongly recommended by its search control kno-
wledge, then it highlights them to suggest them to the user.

While it waits for the user’s next step, WebWatcher pre-fetches web pages it
has just recommended to the user
to minimize network delays. Fig-
ure 3.8 illustrates one cycle of user
interaction. When the user clicks
on a new hyperlink, WebWatcher
updates the log for this search, re-
trieves the page (unless it has al-
ready been prefetched), performs
similar substitutions, and returns
the copy to the user. This process
continues until the user elects to
dismiss the agent. WebWatcher
has the task to suggest an appro-
priate link given user interest and
actual web page. In other words,
it requires knowledge of the fol-
lowing target function:

LinkQuality : Page x Interest x Link-> [0,1]

The value of function LinkQuality can be interpreted as the probability that
the user will select Link given the current Page, and knowing user’s Interest. The
three different approaches to learning this target function from experience are
examined: learning from the previous tours, reinforcement learning based on the
hypertext structure, and the method combination of the first two approaches.

3.4.1.1 LEARNING FROM PREVIOUS TOURS

This approach learns by annotating each hyperlink with the interests of the
users who took this hyperlink on previous tours. Thus, whenever a user follows a
hyperlink the description of this hyperlink is enlarged by adding the keywords
the user entered at the beginning of the tour. During an active tour WebWatcher
compares the current user’s interests with the descriptions of all hyperlinks on

Figure 3.8 WebWatcher is an interface
agent between the user and WWW

3.4 Sample academic recommender systems 61

the current page, and suggests those hyperlinks which have a description suffi-
ciently similar to the user’s interests. Both the user interests and hyperlink de-
scriptions are represented using the TFIDF model, and their similarity is calcu-
lated as a cosine between vectors (refer to sections 3.2.1 and 3.2.2).

3.4.1.2 LEARNING FROM HYPERTEXT STRUCTURE

In the learning method that learns from the previous tours each hyperlink is
represented with the stated interests of earlier users who selected it. This method
augments each hyperlink using the words encountered in the pages downstream
of it. This method is based on reinforcement learning technique. The objective is
to find paths through the web, which maximize the amount of relevant inform a-
tion encountered i.e. to allow agents learn control strategies that select optimal
actions in certain settings.

In this section one possible application of this algorithm is illustrated, while
the detailed description can be found in [JOA97]. Web pages represent all possi-
ble states, and hyperlinks actions, that the agent can take. Suppose that a web
agent looking for pages on which some word w (for example, intelligent), navi-
gates from one state to the other by performing actions i.e. following hyperlinks.
At each state s the agent receives a certain reward Rw(s), which is equal to the
TFIDF value for the word w on
page s. The goodness of an ac-
tion a can be expressed of an
evaluation function Q(s,a) de-
fined for all possible state-action
pairs. The value of this function s
and hyperlink a is discounted
sum of future rewards (TFIDF
values for the word w) over the
optimal tour beginning with a .
The example in figure 3.9 is used to illustrate the algorithm. Nodes represent web
pages, and edges hyperlinks. Each hyperlink is annotated with value of the func-
tion Q(s,a); that state gives reward 1, while there is no reward in other states. If
the agent always follows the action with the highest Q value, it will get to the re-
ward state in the smallest number of steps and thus maximize the discounted
reward it receives (actually, follows the optimal path).

3.4.1.3 RECOMMENDATION OF NEW CONTENTS

Because WebWatcher cannot expect that users will always stick to the pages it
has already seen, a core question in implementing this approach is how to learn a
general approximation for each of the Q-function to that applies even to unseen
pages and hyperlinks. Each hyperlink a is described by the TFIDF vector repre-
sentation of the underlined anchor text, each page analogously by its title. New

Figure 3.9 Example state space

62 Chapter 3 Personalization

contents are recommended based on their similarity with those already exam-
ined. In fact, hyperlink a1 on page s1 is similar to hyperlink a2 on page s2 if the
value of the function a1·a2+2·s1·s2 is minimal.

3.4.1.4 PERSONAL WEBWATCHER (PWW)

Whereas WebWatcher learns to specialize to a specific web locale, personal
WebWatcher (PWW) [MLA96] learns to specialize to a particular user. Analo-
gous to WebWatcher, PWW observes user actions, but it does not include the
user into the learning process (does not require him to enter keywords, nor
comment texts read). This agent learns a model of long-term users’ interests by
observing which pages they do and do not visit. It stores followed hyperlinks,
and recommends the user those that it considers would be interesting for that
specific user. During the learning phase (usually over night) agent analyzes
stored data and updates model of user interests.

3.4.2 WebPersonalizer

System WebPersonalizer [MOB00] employs the architecture shown on figure
3.10 to provide a list of recommended hyperlinks to a user while browsing a web
site. This system calculates recommendations based on hypertext structure of a
site and anonymous usage data provided by web server logs. The overall process
of usage-based web personalization is divided into two components.

3.4.2.1 OFF-LINE PROCESS

The off-line component involves two levels: in the first phase data preparation
tasks are executed. During this phase data is prepared for the analysis (refer to
section 3.3.3.4); server log files are converted into server sessions. Two different
data mining techniques are used for aggregate usage profiles discovery from these
session files. Usage profiles exhibit three important characteristics – they should:

§ Capture possibly overlapping interests of users (since many users may
have common interests up to a point, in their navigational history, beyond
which their interests diverge);
§ Provide the capability to differentiate among pageviews in terms of their
importance within the profile;
§ Have a uniform representation, which allows for the recommendation en-
gine to easily integrate different kinds of profiles (multiple profiles based on
different pageview types, or obtained via different mining techniques).

Given these requirements, representation of usage profiles, as weighted col-
lections of URIs (that were visited by the user during session) provides a great
deal of flexibility [MOB00]. For usage profile discovery two different methods,
based on clustering and association rule discovery are used. After the execution

3.4 Sample academic recommender systems 63

of a data mining task, detected frequent itemsets (FIs) and URI clusters are used by
the on-line component to compute recommendation set.

If the clustering method is used for usage profiles detection the computation
of session clusters from
identified sessions first
has to be accomplished
(refer to section 3.3.3.4).
Then the detected clus-
ters are used for deriva-
tion of aggregate usage
profiles. This procedure
starts by computation of
cluster centroids (the
mean vectors). The mean
value for each URI in the
mean vector is com-
puted by finding the ra-
tio of the number of oc-
currences of that URI a-
cross all sessions to the
total number of sessions
in the cluster and it
represents the weight for
that URI.

For the second
method, the WebPer-

sonalizer system uses Association Rule Hypergraph Partitioning (ARHP) technique
(refer to [HAN97]). This technique is well-suited for the task since it provides
automated filtering capabilities, and does not require distance computation.
ARHP is, also, very useful technique for clustering high-dimensional data sets
because it does not require dimensionality reduction. In the ARHP technique the
set of FIs are used as hyperedges in a hypergraph (hypergraph is an extension of
a graph in the sense that each hyperedge can connect more than two vertices).
The weights associated with each hyperedge are computed based on the confi-
dence of the association rules involving the items in the frequent itemset. The
hypergraph is recursively partitioned into a set of clusters. Each cluster repre-
sents a group of items (URIs) that are very frequently accessed together across
sessions. The connectivity value of vertex (URI appearing in the frequent itemset)
with respect to a cluster measures the percentage of edges with which the vertex
is associated. The significance weight of the URI within the profile is obtained as
a function of the connectivity value.

Figure 3.10 Architecture of web-usage based personalized
system

64 Chapter 3 Personalization

3.4.2.2 ON-LINE PROCESS

On-line component comprises recommendation engine and HTTP server.
Web server monitors the active server session as the client browser makes HTTP
requests. This can be achieved in several ways, among which URI rewriting and
provisional caching of access logs on the web server. Recommendation engine
takes the active user session and compares it with aggregate usage sessions, to
determine the recommendation set of URIs. When determining similarity the sys-
tem normalizes for the size of clusters and the active session (size of the corre-
sponding URI collection). This is very important when matching active sessions
with clusters to get recommendation. If, during the active session, two matching
clusters have the same value of the unnormalized matching function, larger clus-
ter should be ranked lower. This corresponds to the intuitive notion that we
should see more of the user’s active session before obtaining a better match with
a larger cluster. The recommended objects are then added to the last page in the
active session accessed by the user before the page is sent to the browser.

3.4.3 Fab

Fab [BAL97] is a distributed hybrid system, and is a part of the Stanford Uni-
versity digital library project. The process of recommendation in this system can
be partitioned into two stages: first the collection of contents to form a manage-
able database or index, and subsequently selection of contents from this database
for particular user. In the collection stage pages relevant to a small number of
topics are gathered. These topics represent computer-generated clusters of inter-
ests, which track the changing tastes of the user population. In the selection stage
collected pages are delivered to the users. One topic can be interesting to many
users, and one user can be interested in many topics.

Figure 3.11 Overview of the Fab architecture

An overview of the implemented architecture, consisting of agent community
and the central component is illustrated on the figure 3.11. Every agent maintains
a profile (represented by the vector-space model; section 3.2.1), based on words
contained in web pages, which have been rated. System comprises three basic
components: collection agents, selection agents and central router.

3.4 Sample academic recommender systems 65

3.4.3.1 COLLECTION AGENTS

Collection agents find pages for a specific topic. A collection agent’s profile
represents its current topic. The population of collection agents as a whole adapts
to the population of users, not to any specific user. Unpopular (whose pages are
not seen by many users) and unsuccessful collection agents (who receive low
median feedback scores) are regularly weeded out and the best ones duplicated
to take their places. Thus, the collection agents’ specializations need to be fixed in
advance, but are determined dynamically and change over time. Several different
types of collection agents are implemented [BAL97a]:

§ Search agents execute best-first web search and try to locate pages best
matching their profiles. Their assumption in that a page will have links to
similar pages, and so by following links from page to page they can uncover
information relevant to a particular topic.
§ Index agents construct queries to pass to various commercial web search
engines that have already performed exhaustive indexing.
§ Non-adaptable agents, can be: agents that supply randomly picked pages
(random agents); agents that collect various human-picked ’cool sites of the day’
(cool agents) and agents that attempt to serve an average user (no-memory in-
dex agents). The last agent type, rather than maintaining their own special-
ized profile, has profiles that represent an average of all the user profiles in
the system.

It is possible to instantiate a smaller number of collection agents than there
are users, perhaps even a fixed number. This should allow the system to scale
elegantly as the number of users and documents rise. The exact number of collec-
tion agents required is determined by several factors, including the amount of
the overlaps between users’ interests and the tradeoff between the available
computing resources and the quality of recommendations required. These agents
automatically identify evolving communities of interest, allowing the support of
social interactions between like-minded people and automatically provide group
as well as individual recommendations. Effectively, like-minded users are com-
bining their resources, as each collection agent will be receiving feedback from all
user interested in a topic.

3.4.3.2 CENTRAL ROUTER

Central router sends pages found by the collection agents, to the users whose
profiles they match above some threshold. This way each user receives pages
matching their profile from the collection agents.

3.4.3.3 SELECTION AGENTS

The selection agents from the collected pick pages, which will be interesting
to a specific user. The selection agent profile corresponds to the interests of one

66 Chapter 3 Personalization

user. It, also, implements additional functionalities: discards pages that the user
has already seen, and insures that in any single batch of recommendations (usu-
ally 10 pages) exists at most one page from any site. When the user has request-
ed, received, and looked over their recommendations, they are required to assign
appropriate ratings (from a 7 point scale). The user’s feedback represents a sig-
nificant investment in time and effort; hence, they are stored in their own private
selection agent’s profile, and that way it is insured they can never be covered by
other user’s feedback. Therefore they are easily exportable for use in other appli-
cations. The user’s ratings are used to update their personal selection agent’s pro-
files. During this process their values are mapped: interval [1,7] is mapped onto
[-3,3], and then used in Roccio method as correction factor (refer to section 3.2.2).
Those ratings are also forwarded back to the originating collection agents, which
will use them to adapt their profiles; while any highly rated pages are passed di-
rectly to the active user nearest neighbors. The private selection agent of the
neighbor processes these recommended pages in the same way as the pages re-
ceived from the central router.

All the advantages of the hybrid system are exhibited in the selection process:
When making collaborative recommendations, others’ experience is used, rather
than incomplete and imprecise content analysis methods. By making content-
based recommendations, it is possible to show items unseen by others or make
good recommendations to users, even if there are no other users similar to them.
It is feasible to make collaborative recommendations between users who have not
rated any of the same items (as long as they have rated similar items). In this way
the reach of collaborative systems is extended to include databases, which change
quickly or are large with respect to number of users. Using group feedback po-
tentially decreases cycles required to achieve the same level of personalization.

3.4.4 MovieLens Matcher

MovieLens Matcher [HER01] is implemented as an experimental extension
for MovieLens, a movie recommendation web site. MovieLens is a free service
provided by GroupLens research group from the Minnesota University. MovieL-
ens was already using interest recommender based on CF technology. Figure
3.11b shows a list of movies that MovieLens recommends based on the list of
rated movies (figure 3.11a). The greatest weakness of this system, and most cur-
rent CF systems, that generate recommendations based on user ratings is their
basis solely on historical ratings data. This approach assumes that a user’s inter-
est is independent of the task at hand. In reality, actual task or context greatly af-
fects the value of recommendation, which current systems solve by relying on
content-based query engines that use either metadata or full-text indexing and
analysis. However, for development of MovieLens Matcher system a task-
focused approach to recommendation that is entirely independent of the type of
content involved and based primarily on ratings data is used. Since most of the
current systems already use this approach, minimal additional data collection

3.4 Sample academic recommender systems 67

from users is required and no requirement for metadata exists. Figure 3.12 illus-
trates the architecture of this system.

a) b)

Figure 3.12 List of rated (a) and recommended movies (b)

3.4.4.1 INTEREST RATINGS

A collection of numeric ratings, where each rating indicates user’s interest in
a specific item. Ratings can be any scale, but are generally discrete (common
ranges are 1 to 10, 1 to 7, 1 to 5, and 0 to 1).

3.4.4.2 INTEREST RECOMMENDER

In a traditional recommender system interest recommender is the component
that predicts ratings from historical ratings database. This component uses classic
CF approach. It provides an external interface that allows other processes to re-
quest an interest prediction for any (user, item) couple. It cannot produce task fo-
cused recommendations by itself.

3.4.4.3 TASK SPECIFICATION

Task specification consists of input data that indicates what kind of task the
user has in mind to complete. It contains a list of example items associated with
actual task, known as a task profile. There are two distinct approaches to collecting
task profiles. In the first approach user must explicitly specify items associated
with the task. For example, if the goal is to find gift recommendation for children

68 Chapter 3 Personalization

from a book recommender like Amazon.com, it is possible to select two or three
items that that children already own and like. The benefit of this approach is that
the items in the task profile are guaranteed to be associated with the user’s task.
The drawback is that the user must do the work . The task-focused recommenda-
tions must therefore justify the additional work by offering notably more value
than general-interest recommendations. The second approach is automatic. The
system observes user behaviors, such as items purchased or a web page visited,
and infers a task profile. If, for example, a user places a hammer into a shopping
basket, the system could use it as a single item task profile. From this profile, it
might recommend nails. Task profiles created this way do not require additional
work from the user, but they can be false and thus require recommendation algo-
rithms that find task associated items even when errors exist in the task profile.

Figure 3.13 Task-focused recommender system architecture

3.4.4.4 ITEM ASSOCIATION DATA

These are descriptions of associations between items available for recommen-
dation. This data is automatically generated by the task–focused recommender
via analysis of the interest ratings data. Given a task profile, the problem of task-
focused recommendation reduces to one of identifying associations between
items. Each item that is associated with all items in a task profile is likely to be as-
sociated to the user’s task . Primary mechanism for discovering item associations
automatically, independent of content, uses the existing user interest-ratings da-
ta. This data can be represented as a matrix, where each row represents a user
and each column represents an item. Recommendation engines that use CF ap-
proach determine the similarity between users by correlating the rows to find the
rows of ratings that agree. For task-focused retrieval, however, associations be-
tween items should be identified, and not users. Thus, the task-focused recom-
mender computes correlations between columns.

A strong positive correlation between items i and j, in general, means that the
higher the rating a user gives to i, the higher the rating to j. Hypothesis is that
correlation will capture associations between items. If a single user, for example,
gives the same rating to two items, then there is a probability that those items are
associated or contain common elements. As the number of users who give those

3.4 Sample academic recommender systems 69

two items an identical or similar rating increases, the probability that those items
have something in common increases. If the correlations over the entire user base
are computed, a high positive correlation could represent significant common
elements. In the majority of e-commerce systems a set of items is relatively static
compared to the number of users that changes most often [SAR01]. Thus, pre-
computing the all-to-all similarity significantly cuts down the time necessary for
recommendation generation and improves the system performance. Item associa-
tions are computed in a nightly batch process. To reduce the amount of storage,
only the top 100 most-correlated associations for each item are kept.

Figure 3.14 Isolation of simultaneously rated items and similarity computation

3.4.4.5 TASK-FOCUSED RECOMMENDER

The task-focused recommender is the component that gathers a task descrip-
tion from the user and returns a set of appropriate recommendations. In this ap-
proach, the task-focused recommender operates on rating data, predictions from
the interest recommender, and a task profile. It computes both the item associa-
tions and the task-focused recommendations. Figure 3.14 illustrates on-line proc-
ess of computing task-focused
recommendations.

First (�), the user specifies
a task profile to the task-focus-
ed recommender. (the dotted
line indicates that users often
specify previously rated item-
s). Items in a task profile are
referred to query items. Then
(�), the task recommender us-
es the precomputed item asso-
ciations to identify those items most likely to be associated with the items in the
task profile. The result is a task-focused item set. To create a task-focused item set,

Figure 3.15 Data flow diagram

70 Chapter 3 Personalization

only database items that occur in top correlates list for each query item are se-
lected. Finally (�), the interest recommender re-ranks the set based on the inter-
est predictions and returns the resulting ordered recommendation list to the user.
Items that occur close to the top of the lists of all query items are more likely to be
selected. The actual value of the correlation used to identify the association is not
considered, only the ranking. If the ratings database is sparse, that is, if each user
rates only a small percentage of all items, then certain (item, item) pairs will have
a very little overlap. For example, for two movies, A and B, there may be only a
small number of users who have rated both A and B. Correlations based on small
number of data points may be misleadingly high and incorrect. To solve this
problem, a technique common in data mining, namely, support is used (refer to
section 3.3.1.2). Hence, only those correlations that have the support above a
specified support threshold are considered.

3.4.4.6 TASK-FOCUSED RECOMMENDATIONS

Task-focused recommendations consist of a ranked list of items that are most
probably associated with the current task while also being recommended by
other users with similar interests.

The interest ratings and recommender components of this architecture exist in
any current CF system for predicting interests; the other four components are
unique to this solution.

3.4.5 Review

In this section just some of the numerous examples of academic recommender
systems are illustrated. They, all use different variations and combinations of
previously explained techniques for recommendation generation. Table 3.2 con-
tains a comparative assessment of their features.

Table 3.2 Comparative assessment of several academic systems

 usage approach user profiles similarity
computation user engagement

WebWatcher
[95]

a web site IR Short-term, anonymous
(TFIDF)

cos-based Explicit (indicates
interests) / implicit
(follows links)

Fab [96] indicated
topics

hybrid
(IR/CF)

Long-term (TFIDF com-
bined with ratings)

cos-based Explicit (interests
and ratings rang-
ing 1-7)

WebPersona-
lizer [00]

a web site CF Long-term, anonymous
(URI lists)

cos-based,
ARHP

Implicit (follows
links)

MovieLens
Matcher [01]

indicated
task

CF Long-term (rated con-
tents) and

Short-term (task pro-
files)

cos-based,
Pearson and
adjusted cos-
based

Explicit (ratings
from 1-5 and task
specification)

71

4 Portal
Framework

4.1 Infostructure

One of the main objectives of ETH World project consists in improving the
virtual information infrastructure, so called infostructure. In such manner, infor-
mation becomes available to all potential participants: ETH staff, students,
alumni,… anytime and anyplace.

It is evident that this virtual infrastructure is very heterogeneous from the
technical point of view. Information must be available on various devices, while
using different access methods. Users are situated in the spatially distributed or-
ganizations and are specialized in different technical domains. Infrastructure of
the ETH World project has to provide each user with the system that satisfies his
needs.

The ETH World portal [JAUS01], for the user, represents a specific point of
entry into the virtual environment. As such it represents central interface element
between the infrastructure and the user. Infrastructure is consisted of services
(applications), which are available to the user through the portal. In this sense,
the portal has two facets: towards the applications it behaves as a run-time envi-
ronment, while for the user it is information presenter. For this reason, while de-
ploying the ETH World portal prototype some of the main issues were: personal-
ization, security, dynamic representation, price, scalability and complexity of
maintenance and deployment.

4.1.1 Personalization

Various users have various requests from the system. Everyone has prefer-
ences of his/her own and thus adapts the environment to own habits. Hence, the
portal can provide the user with methods, which will, for example, enable user
to, by setting particular parameters (settings), adapt running the existing applica-
tions to his/her needs. Parameters should be persistently stored, so that user can
access them anytime, any place.

As explained (section 2.5.10), the basis for dealing with personalized web ap-
plications is user identification. After the user enters his credentials (user name,

72 Chapter 4 Portal Framework

password) that authentication stays valid for the rest of that session. Figure 4.1 il-
lustrates security scheme applied in this prototype.

unidentified user

identified user

authenticated user

Level 0: no
Personalization

Level 1: incomplete
Personalization

Level 2: total
Personalization

Session Timeout
End Session

Logoff

Figure 4.1 Identification scheme used in the prototype

User can change the system behavior. Thus, user can turn off the identifica-
tion. If some security scheme is applied, portal utilization becomes more com-
plex, since each session requires authentication. User can, either identify himself
to each portal application, once during one session, or utilize single sign-on
mechanism. After the successful user identification, it is possible to set all per-
sonalized parameters in the application. Security checks for particular parame-
ters are executed by the application. If the further refinement of access rights is
necessary, application can generate its own resource ids, and check them in run-
time.

4.1.1.1 SITES AND SESSIONS

The foundation for every personalized application is that the user does not
have to present him/herself to each site, (s)he visits during one session. Since all
the client-server communication goes through HTTP protocol, where each page
is considered to be a response to one user request; but which by being stateless
does not enable web server to easily find connection between particular requests.
Saving status information on the server-side can be accomplished in several
ways. One of them is forwarding the parameters between particular pages. How-
ever, this significantly increases the amount of the transferred data. For that rea-
son, most often user sessions are administered. Session is defined as one access to
a site in a specified time period. It is identified using session ID that is forwarded
as a parameter. RFC 2109 [RFC] describes other mechanism, known as Cookie.
This mechanism is implemented by all web browsers and represents elegant al-
ternative to parameter method; for that reason it is used in this prototype, too.

4.1.1.2 USER GROUPS

In the ETH working environment users can be assigned to various groups.
For example, one assistant on the Computer Science Department in his/her work
uses the portal different from one assistant on the Chemistry Department, and
this one again, completely different from any student or member of the adminis-
trative staff. Each of them has the experiences of his/her own, own tasks and

4.1 Infostructure 73

preferences. Hence, there is one thing they all share; they are all part of ETH.
Figure 4.2 illustrates existing organization on the ETH, which has to be sup-
ported by the postal. The ETH University is consisted of multiple technical de-
partments: Computer Science (D-INFK), Electrical (D-ELEK), Chemistry (D-
CHEM) and so on. Each of these departments comprises several institutes. For
example, computer Science Department includes Institute for Information Sys-
tems, Institute for Theoretical Informatics… and each of them employs a number
of professors and assistants. Furthermore, on each of the departments a number
of students attend lectures, sit exams …

ETH

D-INFK D-ELEK D-CHEM

Students Institute for
Information
Systems

. . .

Professors Assistants

. . .

Figure 4.2 Implemented group hierarchy

Through the established group hierarchy particular applications and informa-
tion access rights are inherited, as well as specific parameters. In such manner,
for example, ETH font becomes available to all portal users, since it has been set
as a parameter of the top level hierarchy group. If they want to, Institute for In-
formation Systems employees can change this font for whole institute, and each
specific user can set his own font. In some situations default parameter value for
the group, on the high position in the hierarchy, must not be personalized. Thus,
there has to exist the possibility to set these parameters as fixed. Then changing
their values by the lower levels in the hierarchy is termed overriding . In the exist-
ing model each user can be the member of only one group; this works for the
groups too. However, it is possible that, for example, graduated student is at the
same time a PhD student, which means that (s)he’d belong to two different
groups. This problem is possible to solve in the following manner: user can hold
several different roles (Personalities). Or, two accounts can be used. Thus, in the
current portal version this is not practicable.

4.1.1.3 SETTINGS

Each application can generate new, or change existing parameter values for
specific users and user groups. The application does not have to know anything
about available memory and access methods. Parameters can be accessed by us-
ing key values. This method resembles to Windows Registry. However, one
should be aware that possible sets of s parameter values should be small. Manag-
ing large amounts of binary data (BLOB) is taken over by the application.

74 Chapter 4 Portal Framework

4.1.1.4 MODULARITY

As already mentioned the majority of portals comprise of the home page that
can be customized and specific parts, so called modules that can be configured.
They are responsible for the content and its presentation. Modules are based on
the common base library, which separates the personalization task from the session
management. In script languages application control logic is usually comprised
in one page, so the life cycle of that code is limited on that page or the active re-
quest. It is much better when the code is divided into external components. Then
the life cycle of the component can be defined by the programer. These compo-
nents can be used simultaneously by several requests and generated data is this
way directly exchanged.

The components can, for example, exchange messages between user sessions
using the standard synchronization methods. If the programming logic is split
into several components, it can be used at the same time on the different places
(reusability) or can be changed independently from the rest of the page (updates).
Thus, using modules brings only improvements to the web software develop-
ment.

4.1.2 Dynamic representation

The dynamic representation includes information selection, their further
treatment in the program and the presentation of result. The problem that ap-
pears frequently in the application development is changing the output format.
Usually application as an output directly produces just one presentation format,
for example, HTML. In the situations, when it is necessary to transform applica-
tion output to be WAP (Wireless Application Protocol) compliant, and that way
make the portal accessible through mobile phone, usually the complete redesign
is required. This means that information production and their representation are
not separated.

4.1.2.1 INTERMEDIATE REPRESENTATION

The solution to the indicated problem is separation of information and pres-
entation. The common feature of both HTML and WML outputs is information,
used for production of the output format. This information has to be stored
somewhere. Since, under normal conditions, this information holds some struc-
ture, employing the structured intermediate representation on the transformation
level makes sense. What is the effect of using intermediate representation, de-
pends the most on the level of interaction between the information producer (ap-
plications) and transformation level (consumer of the structured information). In-
formation can be stored in the binary format, encoded, taken from the database
or textual. When selecting the intermediate representation format, different fac-
tors should be considered, including the appropriate tools and working envi-
ronment for manipulating this representation. Currently, for document represen-

4.1 Infostructure 75

tation on the web mark-up languages from XML/SGML class are used. Thus, it is
obvious that the intermediate representation should also hold a XML alike i.e.
tree structure. The only problem that stays unsolved is whether the format of the
intermediate representation should be standardized, since there are situations
where it makes sense to foreword produced information directly to the next
level, in the binary format.

4.1.2.2 TRANSFORMATION

From the structured intermediate representation transformed output is gen-
erated (figure 4.4). The flexible transformation language enables simple informa-
tion selection and modification. From the implementation point of view, the
question of speed is very interesting.

4.1.2.3 SEPARATION OF CONCERNS

With the growth of web, the need for cooperation between people from dif-
ferent areas appears. Among them there are people from marketing, designers,
artists, ergonoms, programmers and many others. Each of them, applying his/her
specialized knowledge partially contributes to task completion. At the same time,
each particular team member has to have the possibility to freely modify the
parts, (s)he is responsible for. However, usually designers work on the layout
comes to direct conflict with the work of the programmer. Every change of the
code requires the change of the style, and so on. Therefore, the system that en-
ables separation of the application into various interest spheres is necessary. This
is done mainly by technologically imposing a reduced number of contracts and
placing them in a hierarchical shape, suitable for replacing current high-structure
web site management models. A model used in this portal prototype (also ac-
cepted by Cocoon [CO02]) is the pyramid model of web contracts, shown by figure
4.3, and is composed by four different working contexts:

Figure 4.3 Pyramid of contracts

The working contexts are:

§ Management – The people that decide what the site should contain, how it
should behave and how it should appear.

76 Chapter 4 Portal Framework

§ Content – The people responsible for writing, owning and managing the
site content. This context may contain several sub-contexts - one for each
language used to express page content.
§ Logic – The people responsible for integration with dynamic content gen-
eration technologies and database systems.
§ Style – The people responsible for information presentation, look & feel,
site graphics and its maintenance.

The contracts that exist in the Cocoon model are: management – content, man-
agement – logic, management – style, content - logic and content – style. Note that
there is no logic - style contract. The separation of concerns goal is completely
consistent to the goal to partition the programming logic into modules.

4.2 Functions and Architecture

The portal receives requests from the multiple clients. It maps those requests
onto various application calls. The portal applications generate responses in the
intermediate representation format (refer to section 4.1.2.1); these intermediate
representations are then transformed into appropriate output format and for-
warded to the client. This means that the system, illustrated by the figure 4.4,
must comprise of, minimum three levels: client, application and transformation.

Client Application Transformation
Request

Intermediate
representation

Response

Figure 4.4 The basic portal components

4.2.1 Communication Level Architecture

The ETH World portal framework should be easy accessible through the ex-
isting clients, like web browser, for example. These clients are able to present
HTML, XML and XHTML and use HTTP protocol. Due to large availability of
these clients, communication protocol relies upon HTTP. This, at the same time,
enables the existence of WAP applications, since WAP clients communicate only
through WAP Gateway, which, also, requests needed contents through HTTP.
Utilization of the protocols, different from HTTP, is basically realizable through
server-side adapter. The client is responsible for content representation and di-
rect user interaction. All other aspects including security, transactions, load bal-
ancing, administering applications and so on are handled by the server. This kind
of server is termed Web Application Server. Thus, the implemented portal is, in the
same manner, referred to as Portal Application Server.

4.2 Functions and Architecture 77

4.2.2 Portal Application Server

Server-side accepts the client request and returns the response. In the
meantime all the applications, needed for the response generation, have to be
called for execution; and their results transformed into required format. It is de-
sirable that the applications are concentrated on the function of information pro-
duction; technically, this is possible by establishing a central component. It con-
trols applications, and at the same time offers them basic functionalities in the
form of programming libraries. These functionalities are available through the
Application Programming Interface (API) and the managing component (Dis-
patcher-a). API provides applications with the services within the following
domains:

§ Personalization (access to user and group parameters)
§ Security (checking access rights)
§ Calls to other applications (integration)
§ Managing details of the HTTP response (redirection, cookies)

The coordination component (Dispatcher) is responsible for the manage-
ment of overall processing, which includes the following functions:

§ HTTP request dispatching
§ Session management
§ Initialization and application reload
§ User identification and authentication
§ Transformation of the intermediate representation into output format
§ Error handling

Figure 4.5 Building blocks of the portal application server

Block scheme of the portal application server is depicted by the figure 4.5,
while detailed description of its architecture can be found in the following text.

4.2.2.1 DATAFLOW

Figure 4.6 illustrates the conceptual portal architecture (on the component
level). In order to illustrate one of the possible scenarios the path of the individ-
ual client request is monitored:

78 Chapter 4 Portal Framework

§ A client sends request through HTTP to the coordinating component
(Dispatcher). The latter decides, which applications should be called on
execution, and forwards request accordingly.
§ Specific applications execute program logic. They can include or call on
execution other components, tags from a tag library and so on. Through the
portal personalization interface, user parameters for the specific application
can be accessed (they can be loaded, set, modified, or deleted). The applica-
tion output, actually an intermediate representation in XML format, is re-
turned to the Dispatcher.
§ Dispatcher forwards that output to the XSLT transformer. The main
XSLT stylesheet can, using import and include directives, incorporate
other stylesheets, which are stored in the libraries. All user parameters, from
the Style parameter group become available as stylesheet parameters. Ad-
ditional parameters can be forwarded, through the source document sub-
tree, to the external transformer components, for more complex processing.
In such a manner, for example, dynamic images can be viewed. Transformed
representation is returned to the Dispatcher, in the XML format.
§ All the applications should send their final outputs to the Serializer,
which is responsible for the ultimate transformations (for example, HTML to
XHTML) and results are sent directly to the client.

Figure 4.6 Functional scheme of the portal on the component level

4.2.3 Implementation

The portal relies upon the Java Servlet services. All the communication on
HTTP level is, therefore, overtaken by the Servlet Container. It also considers other
aspects like managing parameters, logging, multithreading, initialization, secure
transfer over SSL and other details.

4.2 Functions and Architecture 79

HTTP Client

Tomcat
Portal Servlet and

Applications

Xerces XML parser Xalan (XSLT)JAXP

JSP Engine Regexp Library

Figure 4.7 External Portal components

Figure 4.7 depicts a simplified scheme of the system components cooperation.
Tomcat invokes the Portal servlet, which forwards HTTP-Request to the acquired
application, in accordance with the mapping indicated in the portal configura-
tion. The acquired application can include other applications. The application
output (intermediate representation) is sent back to the portal servlet, and using
the suitable stylesheet transformed with Xalan. Transformed output is sent to the
Serializer (this task is taken by the Xalan, too), and end result through Tomcat
returned to the HTTP-Client. When the JSP application is referenced, first the
wrapper application is called, which then forwards the request to the requested
application. XML output of this application is automatically parsed by Xerces
and in the DOM tree format sent back to the portal servlet. Further on, transfor-
mation and serialization are executed. In the following text there will be some
word on the basic features and the way certain system components function.

4.2.3.1 SERVLETS AND TOMCAT SERVLET CONTAINER

I Servlets

Servlets [JSWP01] are protocol and platform-independent server side compo-
nents from the, written in Java, which dynamically extend Java-enabled servers.
Servlets interact with web clients via a request/response paradigm implemented by
the Servlet Container. This request-response model is based on the behavior of the
Hypertext Transfer Protocol (HTTP). Their initial function is to enable secure
web-based access to data, which is presented using HTML web pages, interac-
tively viewing or modifying that data using dynamic web page generation tech-
niques.

Java Servlet API is a standard Java Extension API, available as an add-on
package. This package (Sun product) can be used to embed servlet support in
other web servers, including Apache (and derived servers, such as Stronghold),
Netscape FastTrack and Enterprise servers and Microsoft’s IIS. When using
Servlet API author is provided by all the advantages of Java language: not only
the code will not have any memory leaks and suffer from hard-to-find pointer
bugs, but it runs on platforms from many server vendors.

80 Chapter 4 Portal Framework

II Ways to Use Servlets

Although all servlets are written in Java, their clients may be written in any
language. When servlets are used in middle tiers of distributed application sys-
tems, they can in turn be clients to other services, written in any language. For
example, servlets can use JDBC™ to contact relation database. Communicating
with other kinds of current or legacy systems may call to alternate software
packages. A few of the many applications for servlets include:

§ A simple servlet can process data, which was POST-ed over HTTPS using
an HTML FORM, passing data, such as, purchase order (with credit card data).
§ Since servlets handle multiple requests concurrently, the requests can be
synchronized with each other to support collaborative applications such as
on-line conferencing.
§ One can define a community of active agents, which share the work
among each other. Each agent should be implemented as a servlet, and
agents would pass data to each other.
§ One servlet could forward requests to other servers. This technique can
balance load among several servers which mirror the same content. Or, it
could be used to partition single logical service between several servers,
routing requests according to task type or organizational boundaries.

III Servlets and Framework

Since servlets are Java objects, they have instance-specific data. This means
that servlets are independent applications running within servers, without en-
gaging additional classes (which are required by some alternative extension
server APIs). During initialization servlets have access to some servlet-specific
configuration data. This allows different instances of the same servlet class to be
initialized with different data, and be managed as differently named servlets.
Other means of interaction for servlet and their framework is utilization of the
ServletContext object.

IV Servlet Container

The Servlet Container, in conjunction with a web server or application server,
provides the network services over which requests and responses are set, de-
codes MIME based requests, and formats MIME based responses. A Servlet Con-
tainer also contains and manages servlets through their lifecycle. A Servlet Con-
tainer can either be built into a host web server or installed as an add-on
component to a web Server via that server’s native extension API. Servlet Contain-
ers can also be built into or possibly installed into web-enabled Application Serv-
ers. All servlet containers must support HTTP as a protocol for requests and re-
sponses, but may, also support other request/response based protocols such as
HTTPS (HTTP over SSL).

4.2 Functions and Architecture 81

A Servlet Container may place security restrictions on the framework that a
servlet executes in. In a Java 2 Platform Standard Edition 1.2 (J2SE) or Java 2 Plat-
form Enterprise Edition 1.3 (J2EE) environments these restrictions should be
placed using the permission architecture defined by Java 2 Platform. For exam-
ple, high-end application servers may limit certain action, such as the creation of a
Thread object, to insure that other components of the container are not negatively
impacted.

Tomcat 4 is an open source Java Servlet/JSP Container, deployed by Apache
Software Foundation [APACHE]. This version implements Java Servlet API 2.3
and JSP 1.2 [JSP], and has numerous features that make it useful platform for web
application and web service development. It consists of a large number of differ-
ent components, which are connected and communicate according to the con-
figuration file conf/server.xml. As already indicated, Tomcat takes over the
lower foundation level of portal functionality and based on corresponding con-
figuration data (element Context in file server.xml for URI specified by the
Host element and file web.xml in the designated context) forwards requests
from an external world to the Portal servlet component. Thus, Tomcat contains
WebDAV-Filter [WDAV] that allows distributed Authoring and Versioning of web
applications and documents.

V Servlet Lifecycle

Servlets are always dynamically loaded, although servers usually provide an
administrative option to force loading and initializing particular servlets when
server starts up. Servlets are loaded using normal Java class loading facilities,
which means that they may be loaded from remote directories (for example, a
trusted https://department/servlets directory) as easily as from local file
system (figure 4.8). This increases flexibility in system architecture and easier dis-
tribution of services in a network. Loading is executed by the Servlet Container’s
ClassLoader. Servers also vary in how they know when to load servlets. When a
request comes in, the server knows how to map it to a servlet, which may first
need to be loaded. This mapping will usually be done in one of these common
ways:

§ Server administrators might specify that some of client requests always
map to a particular servlet. For example, one which talks to a particular da-
tabase.
§ Server administrators might specify that part of the client request is the
name of the servlet, as found in administered /servlets directory. At many
sites, that directory would be shared between servers, which share the load
of processing for the site’s clients.
§ Some servers may be able to automatically invoke servlets to filter the
output of other servlets, based on their administrative configuration. For ex-
ample, certain types of servlet output may trigger postprocessing by other
servlets, perhaps to perform format conversions.

82 Chapter 4 Portal Framework

§ Properly authorized clients might specify the servlet which is to be in-
voked, without administrative intervention.

Figure 4.8 Possible sources of servlets

After being loaded, three methods are involved in the lifecycle of a servlet:

§ Servlets are activated by the server through an init method call. Servlet au-
thors may, if they want, provide their own implementation of this call, to
perform potentially costly (usually I/O intensive) setup only once, rather
than once per request. Examples of this kind of setting up are session ini-
tialization using other network services and providing access to perma-
nently stored data (in a database or file).
§ After initialization, servlets handle many requests. Each client request
generates one call of method service. These requests may be concurrent; this
allows servlet to coordinate activities among many clients. Class-static state
may be used to share data between requests.
§ Requests are processed until the servlet is explicitly shut down by the web
server, by calling the destroy method. Then Servlet class is ready for garbage
collection.

VI Security

Servlets have access to information about their clients. When used with secure
protocols such as SSL, peer identities can be determined reliably. Servlets relying
on HTTP, also have access to HTTP-specific authentication. Since servlets have the
Java advantage memory access violations and strong typing violations are not
possible, so that faulty servlets will not crash servers.

4.2 Functions and Architecture 83

Unlike any other current server extension API, Java Servlets provide strong
security policy support. This is because all Java environments provide a Securi-
tyManager, which can control whether the actions, such as network or file access
are to be permitted. The assumption is that all servlets are distrusted, and are not
allowed to perform operations such as accessing network services or local files.
However, servlets "built into" server, and servlets that have been digitally signed,
as they were put into Java Archive (JAR) files, may be trusted and granted more
permission by the security manager. A digital signature on executable code indi-
cates that the organization, which signed the code "vouches for it" that it does not
break security polices.

Figure 4.9 Comparing two approaches to server extensions

Figure 4.9 shows the comparison of two existing approaches to server exten-
sions. One way is to let Java SecurityManager monitor at fine granularity servlet
activities. In this case configuration of Java Security Manager has to be indicated
in file $CATALINA_HOME/conf/catalina.policy, which is the part of Tomcat
Servlet Container installation. This file completely overrides java.policy file that
lies in JDK system directory. The second approach includes activities of native
code extensions, which are never monitored. In both cases, a host operating sys-
tem will usually be used to provide very coarse grained protection.

VII Performance

One of the biggest performance features of servlets is that they do not require
creation of a new process for each request. In most environments, many servlets
run in parallel within the same process as the server. When used in such envi-
ronments with HTTP, servlets provide compelling performance advantages over
both CGI and Fast-CGI approach. This is the consequence of the fact that servlets
require light-weight thread context switches. Even Fast-CGI uses heavy-weight
process context switching on each request, while regular CGI requires even heav-
ier start-up and initialization code on each request. Figure 4.10 compares three
server extension approaches:

§ (a) The servlet approach is normally used to support embedding inside
the server;

84 Chapter 4 Portal Framework

§ (b) CGI uses a new child process per request;
§ (c) Fast-CGI uses one child process for many requests.

Figure 4.10 Comparison of three server extension approaches

Thus, for example, at the moment the server starts, Connector component of
Tomcat Servlet Container creates specified number of request processing threads.
One instance of this component listens the connection to specific TCP port on the
server. One or more Connectors may be configured, as a part of one Service and
each of them accepted request forwards to the assigned Engine element, which
then processes that request and creates response. The created response is over the
same Connector returned to the client. Each accepted request requires one thread
for execution. If the server receives simultaneously more requests than it can
handle using the available threads, the additional ones can be created (until
maximum number specified by maxProcessors attribute of the <Connector/>
element in conf/server.xml). Additional number (acceptCount) of incoming
simultaneous requests is accepted to wait for the server socket to get released,
while all the rest gets "connection refused" error message.

Since in most environments already initialized servlets can handle many cli-
ent requests, the costs for initialization are spread over many methods. All the
client requests to that service have the opportunity to share the data and com-
munications resources, benefiting more strongly from system caches. With many
implementations of the Java Virtual Machine (JVM), Java Servlet applications
automatically take advantage of additional processors. This helps provide better
throughput and response time to the clients. Because 100% pure Java programs
do not care what operating system they use, author has the freedom to choose
whatever system vendor best addresses his/her application requirements.

4.2 Functions and Architecture 85

4.2.3.2 XERCES­J 1.3

I DOM

For access and processing of XML documents in applications corresponding
interface is necessary. As a standard W3C recommended Document Object
Model (DOM). Class DocumentBuilder parses original document and builds in
memory internal presentation of the whole document as a tree. DOM defines API
for accessing that tree. Among other things, in the application it is possible, to se-
lect and modify parts of the tree, as well as specific elements, their deletion from
the tree, or adding new elements. Thus, it is frequently used in the applications
that access configuration files.

The example 4.1 sows simple application that uses DOM parser. It parses and
modifies file configuration.xml. In the application node named <dbconnec-
tion/> is accessed and all its attributes transformed into elements, and then the
original tree is replaced by the modified one in the original document.

In the example 4.2 the element <dbconnection/> is shown, before and after
the modification is executed. The same effect can be achieved when using XSLT
and Xalan as a processor.

Example 4.1 DOMParser
...
public static void main(String args[]){

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder domBuilder = factory.newDocumentBuilder();
configDoc = domBuilder.parse("configuration.xml");
//in the document retrieves a dbconnection node
Node dbconn =

configDoc.getElementsByTagName("dbconnection").item(0);
// finds a list of attributes
NamedNodeMap attributes = dbconn.getAttributes();
// and for each attribute in the list
while (attributes.getLength()> 0){

Node currentAttr= attributes.item(attributes.getLength()-1);
String name = currentAttr.getNodeName();
// generates corresponding element that is
Element newEl=configDoc.createElement(name);

newEl.appendChild(
configDoc.createTextNode(currentAttr.getNodeValue()));

// as a child element added to dbconnection node
dbconn.appendChild(newEl);
// anhd then delets that attribute from the attribute list
attributes.removeNamedItem(name);

}
// Serializes DOM
OutputFormat format = new OutputFormat(configDoc);
// writes modified document into original file
FileWriter stringOut=new FileWriter("configuration.xml");
XMLSerializer serial = new XMLSerializer(stringOut,format);
// as DOM Serializer
serial.asDOMSerializer();
serial.serialize(configDoc.getDocumentElement());

}

86 Chapter 4 Portal Framework

II SAX

Simple API for XML [SAX] functions differently: instead of building the
document tree, during the parsing process it generates the series of events. Ap-
plication registers EventHandler for these events and receives from it informa-
tion on document and its structure, based on which it builds corresponding in-
ternal representation. Thus, for example, parser generates events when
encountering the beginning or the end of the document, start and end tag of the
element, … Therefore, SAX is a good choice in the situations when application
needs just a part of the original XML document; as a matter of fact, it can be used
as a filter. Example 4.1, implemented using SAX parser, is much more complex
and requires much more space, so it is given in the appendix A.

III SAX vs. DOM

Because of the event-driven nature of the program EventHandler usually has
to handle additional lists and counters that store information on the state of
document. Thus, it is necessary to be careful when more threads use the same
EventHandler simultaneously. Working with DOM is much easier. It is conven-
ient when application modifies source document, i.e. when application does not
require internal data representation but transforms already existing DOM tree.
Problem appears when the source document is too big, and then DOM tree occu-
pies a large part of the memory and slows down the application.

Xerces is the most common XML Parser, also developed and made available
by the Apache Software Foundation [XERCES]. In this package both, DOM Level
2 [DOM] and SAX Version 2.0 [SAX], are implemented since there are situations
when each of them shows significant advantages. The ETHWorld portal uses just

Example 4.2 configuration.xml before the modification
...
<!— database connection-->
<dbconnection application="dispatcher"
driver="com.microsoft.jdbc.sqlserver.SQLServerDriver"
init="jdbc:microsoft:sqlserver://gorillaz:1433;
Database=TryCourseScheduler;SelectMethod=cursor"
user="sunpress" password="sunpress" connectionCount="2" />
...
configuration.xml after the modification
...
<!— database connection -->
<dbconnection>

<user>sunpress</user>
<password>sunpress</password>
<init>jdbc:microsoft:sqlserver://gorillaz:1433;
Database=TryCourseScheduler;SelectMethod=cursor</init>
<driver>com.microsoft.jdbc.sqlserver.SQLServerDriver</driver>
<connectionCount>2</connectionCount>
<application>dispatcher</application>

</dbconnection>
...

4.2 Functions and Architecture 87

DOM functionality in order to access configuration data and for integration of
the XML output of one application in the other.

There is another API for accessing XML documents; it is not implemented as
a part of Xerces package, but as a separate JDOM package (refer to section 4.4.).

4.2.3.3 XALAN-J 2.0

Xalan is a stable and extendable XSLT processor implementation [XALAN].
Xalan is one of the first XSLT processors, compatible with JAXP transforming in-

Example 4.3a SimpleTransformer
public static void main(String args[]){

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder domBuilder = factory.newDocumentBuilder();
configDoc = domBuilder.parse("configuration.xml");
//in the document retrieves the node named dbconnection
Node dbconn =

configDoc.getElementsByTagName("dbconnection").item(0);
TransformerFactory tf = TransformerFactory.newInstance();
// Creates transformer for indicated stylesheet
Transformer modify =

tf.newTransformer(new StreamSource("modify.xsl"));
// transforms and writes out into source file
modify.transform(new DOMSource(configDoc),

new StreamResult(new FileWriter("configuration.xml"));
}
b) Modify.xsl
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/..." version="1.0">

<xsl:template match="/">
<xsl:apply-templates select="*"/>

</xsl:template>
<xsl:template match="dbconnection">

<xsl:element name="{name(.)}">
<xsl:apply-templates select="@*"/>

</xsl:element>
</xsl:template>
<xsl:template match="*">

<xsl:element name="{name(.)}">
<xsl:for-each select="@*">

<xsl:attribute name="{name(.)}">
<xsl:value-of select="."/>

</xsl:attribute>
</xsl:for-each>
<xsl:apply-templates/>

</xsl:element>
</xsl:template>
<xsl:template match="@*">

<xsl:element name="{name(.)}">
<xsl:apply-templates/>

</xsl:element>
</xsl:template>
<xsl:template match="text()">

<xsl:value-of select="."/>
</xsl:template>

</xsl:stylesheet>

88 Chapter 4 Portal Framework

terface. By using the Xalan XSLT-processor in the portal intermediate representa-
tion is transformed and serialized.

Example 4.3a shows a part of the main method (without try/catch brackets
and declarations) of a Java application that calls on Xalan to transform source
XML document. The transformation process gives the same result as the code in
example 4.1, though the way of getting the result is different. When using Xalan
XSLT stylesheet for transforming XML document is needed (shown in the exam-
ple 4.3b).

4.2.3.4 JAXP 1.1

Java API for XML processing [JAXP] is an abstract interface, which guaran-
tees compatibility with different XML parsers and XML-transformers. API is con-
sisted of the parsing part and the transformation part. JAXP extends existing
DOM API with new functionalities: provides method for reading DOM Docu-
ment object from XML tree, methods for controlling parser behavior (validation
and error handling), and provides pluggable DOM parser implementation. The
transformation part contains specialized implementations of interfaces Source
and Result in javax.xml.transform.* packages.

JAXP API

javax.xml.parsing.*

javax.xml.transform.* DOM
org.w3c.dom.*

SAX
org.xml.sax.*

SAX Parsing
application

DOM Parsing
application

Transformer
application

Figure 4.11 JAXP API and its utilization

One JAXP usage is shown in the example 4.3, where method newInstance()
from abstract class javax.xml.transform.TransformerFactory, is refer-
enced as a part of JAXP; while at the runtime real implementation for that class is
dynamically loaded, according to data specified in configuration file (for exam-
ple, it may be org.apache.xalan.processor.TransformerFactoryImpl, im-
plemented in Xalan). JAXP contains four modules that are activated, depending
on the task (figure 4.11).

By using JAXP interface, it is possible to simultaneously embed different
XML parsers and transformers, compliant to JAXP API, into portal.

4.2 Functions and Architecture 89

4.2.3.5 JSP 1.2

Java Server Pages Specification [JSP] enables creation of dynamic pages (mix-
ture of tags and Java code, refer to section 4.4.1). They are, on request, parsed and
compiled into Java servlet, which in a row receives that request from JSP proces-
sor. One of the basic JSP features is separation of code and layout, by using Java
Beans [EJB] and Java tag libraries. In the portal JSP is used for application devel-
opment (JSP generates XML).

4.2.3.6 JAKARTA REGEXP

For correct URI mapping onto appropriate application, Dispatcher (package
portal.framework) uses RegularExpression Java library [REG]. Thus, it is not
necessary to use regular expressions when writing applications, which offers the
possibility to use more complex mappings later on.

I org.apache.regexp.RE

RE is efficient lightweight class that evaluates and maps regular expressions.
Regular expressions are pattern descriptions, which enable sophisticated string
mapping. In addition to being able to match a string against a pattern, it is also
possible to extract parts of the match. This is especially useful in text parsing.

To compile a regular expression (RE), simple construction of an RE matcher
object from the string specification of the pattern is made:

RE r = new RE("a*b");

Once this is done, either of RE.match() methods should be called to perform
matching on a String, for example: boolean matched = r.match("aaaab") sets
the boolean variable matched on true, since string "aaaab" matches the pattern
"a*b" … RE runs programs compiled by the RECompiler class. Class RE, for rea-
sons of efficiency, does not include the actual regular expression compiler; thus,
when one or more regular expressions need to be pre-compiled, the 'recompile'
class can be invoked from the command line to produce compiled output like
this:
// Pre-compiled regular expression "a*b"
char[] re1Instructions = {

0x007c, 0x0000, 0x001a, 0x007c, 0x0000, 0x000d, 0x0041,
0x0001, 0x0004, 0x0061, 0x007c, 0x0000, 0x0003, 0x0047,
0x0000, 0xfff6, 0x007c, 0x0000, 0x0003, 0x004e, 0x0000,
0x0003, 0x0041, 0x0001, 0x0004, 0x0062, 0x0045, 0x0000,
0x0000,

};
REProgram re1 = new REProgram(re1Instructions);

Then, regular expression matcher object (RE) from the pre-compiled expres-
sion re1 can be constructed and thus avoid the overhead of compiling the ex-
pression at runtime. If more dynamic regular expressions are required, a single

90 Chapter 4 Portal Framework

RECompiler object can be constructed, and re-used to compile each expression.
Similarly, it is possible to change REProgram, run by a given matcher object at
any time.

In the portal this package is used when calling applications, it maps URIs on
to application calls. Patterns (application names) are stored in the confgura-
tion.xml file (refer to section 4.3).

4.2.3.7 PACKAGES

Portal Application Server contains over 30 classes and interfaces, organized in
7 packages. Class Dispatcher from the package framework, which implements
servlet functionality, overtakes handling the incoming requests, as well as global
portal management. The rest of the classes and interfaces, are organized in fol-
lowing 7 packages:

Figure 4.12 The portal package diagram

§ Framework: Supervision of the portal operation. Communication with Serv-
let Container and database. Provision of wrapper classes for Request and Re-
sponse objects.
§ Session: Generation and managing Session objects.
§ Application: Base classes in Portal for application execution. Maintains
stylesheets, default applications (Login, Authentication, Logout,
Logoff, ErrorHandler, JSPWrapperApplication). Exeption classes for
error handling.
§ Security: Checking document security privileges and authentication.
§ Personalization: User and user group administration. Implementation of
hierarchical user parameter storage.

4.2 Functions and Architecture 91

§ Util: Utility classes for login, string processing, Base64 encoding tag-array
conversion.
§ Taglib: Tag libraries to be used by the Portal JSP applications.

In the following text several chosen classes are described. From the descrip-
tion it is possible to get the impression where which functionality was imple-
mented. Actual implementation details can be identified in the code.

I framework.Dispatcher

Class Dispatcher, implemented as a servlet, represents the main portal class;
thus, it is addressable for clients from the outside world by using HTTP-protocol.
As already indicated, it overtakes total control over the portal and applications.
The main tasks of this class are:

§ Initializa tion. By referencing init method, Servlet Container enables the
portal to initialize its own variables. First the configuration is loaded and
parsed from the configuration.xml file. Then, database pooling compo-
nent is created and configured, and some of the instances of Transformer or
Serializer Factory classes initialized. Class PortalContext, which is
created later, contains functionalities that can be used by all applications and
the framework itself (for example, XML Parser or database-pool instance). In
the steps to follow Java Classloader loads application classes and creates one
instance of each. One instance of a StylesheetManager is placed on the site,
to administer stylesheets required by applications. Further on, using the
RegularExpression class URI <mapping/> is compiled, to enable execution
of the corresponding applications. The Dispatcher servlet contains an in-
stance of each of the remainder system applications (SessionManager, Se-
curityManager, PersonalityManager).
§ Request mapping and routing: When Dispatcher receives the request from
the Servlet Container, it locates, according to the element <mapping/> in the
file configuration.xml, an appropriate application and forwards it that re-
quest. The application itself can, in a row call Dispatcher in order to inte-
grate other applications.
§ User identification and authentication: Prior to the request forwarding to the
appropriate application, it is checked whether identification or authentica-
tion are required. If they are required, and current user does not have the re-
quested access rights, call to needed application is replaced by the class
Login or Authentication call. They are also implemented as applications.
§ Transformation and Serialization: An application output has to be trans-
formed by using the suitable stylesheets. Dispatcher determines which
stylesheet to use according to the content type of the PortalResponse object
and calls on the appropriate Transformer. Before the output is sent to the
client Serializer is addressed to, from internally used DOM-tree create

92 Chapter 4 Portal Framework

text and write it to stream. Later on, the conversion is executed compliant to
the specific rules (for example, character encoding, XHTML from HTML).

II session.Session Manager

Administration of user sessions is taken over by the singleton SessionMan-
ager class. It offers functions like creation, loading, storing and deleting Session
objects and discovering SessionIDs. StorageStrategy object determines the
way persistency is implemented, and in the current version only MemoryStorage
is offered. This object stores all objects into one instance of the HashMap class in
memory.

III session.Session

One instance of the Session class contains all the information on one user
session. Attributes can be read, written and it is possible to form the user hierar-
chy. In order to make the later integration of the portal and Servlet Container ses-
sion management easier, class Session is derived from the HttpSession class.

IV personalization.Personality

Personality is either one User or the user Group. Each user has his/her own
unique ID and belongs to only one group. The difference between two indicated
subclasses is that they enable different administration of the group hierarchy.
Function getAllIds() returns the list of all personalities, no matter whether
they are users or groups.

V personalization.PersonalityManager

Singleton class PersonalityManager takes over the creation of Personality
objects, like User or Group, for example. Validity of the objects is checked in the
portal database and the appropriate groups are set.

VI framework.PortalRequest

With each reference to the application contained in the portal one class of the
PortalRequest object is instantiated. This class wraps HttpServletRequest.
When using this class application is enabled access to the parameters in the HTTP
request or HTTP header. This wrapper class is needed, because only Servlet Con-
tainer has the privilege to create and/or change HttpServletRequest. In the por-
tal, however, it is necessary to have the ability to create new requests, for exam-
ple, when recursively embedding applications or when the request is, using the
wrapper application returned to the container (refer to the description of the
JSPWrapperApplication class). Class PortalRequest inherits class HttpServ-
letRequestWrapper.

4.2 Functions and Architecture 93

VII framework.PortalResponse

Just like the PortalRequest, class PortalResponse is a wrapper class too; but
it wraps class HttpServletResponse. When working with servlets redirection of
the OutputStream, is usually not possible. However, the portal needs this func-
tionality to enable forwarding the application output to XML parser. This is pos-
sible when class HttpServletResponseWrapper is used.

4.2.3.8 SESSION MANAGER AND PERSONALIZATION

Session management is one of the basic portal functions. The majority of Serv-
let Containers provides already defined session functionality. If the author uses
this functionality she/he is restricted to interfaces defined by Java Servlet specifi-
cation, but it can use suitable extensions of the actual Servlet Container.

Actual interface does not provide the possibility to choose freely the persis-
tence mechanism (memory, database), which could represent the disadvantage
when scaling up the system. Additionally, method for SessionID transfer (URL
or Cookie) cannot be dynamically selected and therefore personalized. These are
the reasons why for the given portal implementation new SessionManager
(portal.session.Session) is developed. When using Servlet/JSP Container the
portal has to use its own SessionHandling, due to lack of integration facility. This
problem is possible to solve only by implementing new session classes for the ac-
tual container.

4.2.3.9 SECURITY

Security is in this portal implementation simply realized on purpose. Pass-
words are stored in plain text format (instead hash function utilization) and there
is only one authentication option, by using user name and password. The possi-
bility of securing the Servlet Container is not taken into consideration. It would be
reasonable to offer new mechanisms for authentication, like ones using HTTP basic
authentication or analyze SSL client permissions.

4.2.4 Example dataflow

Being the main servlet, Dispatcher is responsible for correct calls of applica-
tions, that the current user holds appropriate privileges and for output genera-
tion. Since the servlet initialization process was clarified in the previous section,
here the way specific requests are handled will be considered in detail. In the fur-
ther text, the processes, occurring after the Servlet Container executes Dispatcher
servlet doGet method call, are explained:

§ Connection to the database. At the moment the application is started it de-
mands the connection to the database from the database pool, and opens a
new transaction. The main purpose of this database connection is consistent
read and write of user parameters. This means that each request is executed

94 Chapter 4 Portal Framework

alone in the database. Since the applications are sequentially processed, this
is also applicable to each specific application.
§ Session. The attempt is made to derive a valid SessionID from the avail-
able HTTP parameters. If the attempt is successful, SessionManager activates
the session and Dispatcher is forwarded the instance of the Session class.
SessionManager takes into consideration all HTTP GET and POST parame-
ters and Cookie values with name portalsession. If the session does not exist,
or is not valid any more a new session is created by calling the newSes-
sion() method.
§ User. In this step user is identified and a new User object created, or the
existing one retrieved. If the user is already connected with one session, the
retrieval is finished. Any other way PersonalityManager is required to
identify the user from the Request portalUser parameter. If this action
ends unsuccessfully, which resembles to the level 0 on figure 4.1, object User
is assigned null value.
§ Mapping. Configured application mapping is used (refer to section 4.3), to
identify appropriate application from the request URI.
§ Saved Request. If the request redirection is needed, due to lack of user iden-
tification or in order to perform internal authentication, by using applica-
tions Login or Authentication, it is necessary to buffer original request.
Hence, the actual user request is stopped and a new one cannot be created. If
the outcome of Login application was successful, URL of the saved request
is used to perform suitable HTTP redirection.
§ Permissions. SequrityManager checks user access rights for all available
resources.
§ Application call. After the private method processApplication() is refer-
enced, corresponding application starts execution. By calling method han-
dleRequest() appropriate PortalRequest and PortalResponse objects
will be created. Application can, by calling includeApplication method
(class PortalContext), integrate transformed, but not yet serialized output
of other applications.
§ Transformation. Intermediate representation in XML format, generated by
the application, is sent to Dispatcher as a part of DOM tree (Document-
Fragment). First a new Transformer, compliant to JAXP 1.1, is generated
for the defined stylesheet. Then all the parameters from group Style are set
into this Transformer instance. Finally, DOM - DOM transformation is
started.
§ Commit. User parameters utilized in User object are, if changed, written
back to database. After the execution of database Commit statement, the con-
nection is released.
§ Serialization. If there is no HTTP redirection (HTTP header field Location)
then prepared output can be sent back to the client. Serializer is, actually,
one usual transformer, which writes its output directly to OutputStream.

4.2 Functions and Architecture 95

What type of output format is expected (XML, XHTML, HTML etc.) is al-
ready specified in the OutputProperties.
§ End. SessionManager should now store the active session. For that, class
session.StorageStrategy is used.

4.2.5 Database

4.2.5.1 INTERFACE

Pooling. Database connections are expensive resource. Primarily, because
opening new database connection can take a while, and also because number of
available database connections is limited (memory, performance, permissions).
Therefore portal uses, so called database connection pool (DBConnectionPool).
Once opened and initialized, connections can be taken from and returned to the
pool after they are used.

Transaction. Since Java Database Connectivity (JDBC) allows using only one
connection for maximum one transaction, each Request needs at least one con-
nection, which reads and writes personal parameters. Since Login process
(checking user name and password) is implemented as an application, it requires
its own database connection. This application gets the connection from the pool,
too. This means that existence of, at least, two open database connections is nec-
essary for the correct portal functioning.

Figure 4.13 Relational database diagram

Threads. Database pool can be used simultaneously (servlets are multithreaded
applications). Thus, methods getConnection() and releaseConnection()
have to be synchronized. Threads, mutually, communicate by using
wait/notify mechanism. One thread has timeout of 10 s, when it waits for the

96 Chapter 4 Portal Framework

database connection. After this period the connection management process is
blocked and the user receives an error message.

4.2.5.2 SETUP

DB scheme. Relational database is used as a permanent storage for user data,
including personalization parameters, metadata on user and user groups, secu-
rity features. Figure 4.12 illustrates relational database diagram. For the simplic-
ity purposes this database was developed in Microsoft Access, which does not
support transactions (and afterwards exported to MS SQL Server 2000). Any da-
tabase, that supports JDBC, can be configured based on this example.

4.3 Portal Configuration and Portal Application
Development

Portal files are situated in the various directories. Compiled Java classes are
stored in WEB-INF/classes or WEB-INF/lib (as JAR files). Besides that /lib di-
rectory must contain jakarta-regexp-1.2.jar. Then, configuration of Portal
servlet directory in Tomcat must be performed. This is done by insertion of the
following lines in <Engine/> element of the $CATALINAHOME/conf/server.xml
file:

<!—Tomcat Portal Root Context -->
<Context path=”” docBase=”E:/myDevelopment/myPortal”
debug=”1” reloadable=”true”>

From the security reasons it is recommendable, that from the file web.xml
element <Mapping/>, which maps end jsp to servlet jsp, is deleted. JSPWrapper-
Application calls servlets by using only their names. After the installation of the
Portal servlet is performed Tomcat can be normally started. File configura-
tion.xml is used as a central portal configuration file. It is stored in the servlet
document Root. Beside all the other information, it contains definitions of all
stylesheets and all applications.

I Base

Basic regulations related to the database and application root directory (with-
out them set, system would not be able to function) are clarified by the tables 4.1
and 4.2. The corresponding examples illustrate the way they are defined:

<dbconnection application="dispatcher"
driver="sun.jdbc.odbc.JdbcOdbcDriver"
init="jdbc:odbc;User=portal;PW=portal"
connectionCount="2" />

Table 4.1. Portal and database connection

Applications The list of a pplications, which can access database using dB-pool (had not
been considered in prototype)

4.3 Portal Configuration and Portal Application Development 97

Driver name of the Java class for the corresponding JDBC driver

Init initialization data base (here : ODBC for data source, user name and
password)

connection-
Count

Number of available connections in the pool i.e. simultaneously open
connections .

<docroot path="E:/development/da/portal/applications"
relative="/applications" />

Table 4.2 Application Root Directory
path absolute path to the directory containing applications and stylesheets

relative path relative to Servlet-Root

II Transformers, Serializers

Definition of all JAXP transformers and serializers used is shown by the ta-
bles 4.3 and 4.4.

<transformer name="xslt"
class="org.apache.xalan.processor.TransformerFactoryImpl"/>

Table 4.3 Definition of one JAXP transformer
Name unique identifier, assigned to a stylesheet during the definition

Class complete name of the class that implements Transformer Factory.

<serializer type="text/html"
properties="method=html,ident-amount=2"
class="org.apache.xalan.processor.TransformerFactoryImpl"/>

Table 4.4 Definition of one JAXP serializer
type MIME output type (unique) to be used by this Serializer

properties Output characteristics, which re set at runtime .

class complete name of the class implementing Factory (similar to transformer)

III Applications

Contains definition of all the available applications. They can be: built-in and
add-on applications.

<!—login application -->
<application name="login" class="portal.application.Login"
path="login" authRequired="no" loginRequired="no">

</application >

Table 4.5 Description of one application
Name unique identifier used for mapping

Class complete name of the application class

Path relative path to application directory, containing stylesheets and
other data required by applications

authRequired
=[yes/no]

user authentication (level 2) required or not

loginRequired
=[yes/no] user identification (level 1) required or not

98 Chapter 4 Portal Framework

IV Styles

Each application can be assigned one or more stylesheets. Definition of one
stylesheet has the following format:

<style name="loginStyle"
transformer="xslt" target="text/html" media="screen"
file="login.xsl" default="yes"/>

Table 4.6 Connection to one stylesheet
name unique identifier that can be used by application

transformer ID of the Transformer-Factory (see above)

target MIME output type and ID of the Serializer-Factory

media Output medium for which the stylesheet is created (had not
been considered in prototype)

file file , that contains stylesheet indicated

default=[yes/no] for each output format the default stylesheet can be defined

V Mapping

Defines mapping from an URI to an application:

<mapping pattern="/login*" path="/login" application="login"/>

Table 4.7 One mapping
pattern Regular Expression used for matching the URI

Path absolute mapping path, based in servlet root

application ID of the application called

4.3.1 Applications as Java classes

All the applications, executed on the prototype, are basically Java classes, de-
rived from portal.application.Application. This abstract superclass, defines
interfaces for application calls and contains configuration information and appli-
cation stylesheets. Class Dispatcher calls the method of this class:

public DocumentFragment
handleRequest(PortalRequest req, PortalResponse resp)

throws PortalApplicationException

this will be forwarded to the appropriate application, where PortalRequest and
PortalResponse are wrapper classes for HttpServletRequest and HttpServ-
letResponse, available to Dispatcher servlet. The output of the application is
DocumentFragment, i.e. a part of a XML tree, compliant to DOM specification.
Dispatcher receives DocumentFragment, transforms it, by using one of the,
output type conforming, stylesheets and returns it to the client.

4.3 Portal Configuration and Portal Application Development 99

Development of an application, as Java class, is illustrated simple example
HelloWorld output. Application output is in HTML format, and the procedure is
following:

§ Write an application that returns ‘Hello World’ as DocumentFragment.
Text becomes the content of the structural component (<hellotext/>).
§ Write a XSLT stylesheet that selects structural component and generates
complete HTML output.
§ Configure the application in the portal configuration file (configura-
tion.xml) and restart Tomcat.

Example 4.4 Hello World application (part)
public DocumentFragment handleRequest (
PortalRequest req, PortalResponse resp){

Document doc = resp.getDocument();
DocumentFragment docPart=doc.createDocumentFragment();
Element docRoot = doc.createElement("hellotext");
Text t=doc.creatTextNode("Hello World");
docRoot.appendChild(t);
docPart.appendChild(docRoot);

}

As it is obvious from the code example 4.4, in the first step global document
for this requests Response is acquired. It is used to generate suitable Document-
Fragment, Element and Text. Then the Text is as a child element, assigned to
<helloText/> structural component, and this one to the DocumentFragment.

§ Stylesheet. Appropriate XSLT stylesheet is shown by code example 4.5. As
an illustration here two equivalent templates are defined (instead just one
for <hellotext/> element). The first template generates HTML frame for
the document, while the second one shows the content of <hellotext/>
element (value-of). Stylesheet will be stored in the /hello directory in Por-
tal Application Root, under HelloWorld.xsl .
§ Configuration. The only thing left to do is application configuration in the
portal. In the subtrees <applications/> and <mappings/> the following
node has to be inserted:
<application name="HelloWorld"

class="portal.demo.HelloWorld"
path="/hello"
authRequired="no" loginRequired="no">
<style name="helloStyle" transformer="xslt"

target="text/html" media="screen"
file=" HelloWorld.xsl" default="yes"/>

</application>
<mapping pattern="/hello*" path="/hello" application="HelloWorld"/>

This provides that both, application and stylesheet are acquired when the
portal is started. Prior to that application must be compiled and its class is stored
in WEB-INF/classes/demo. By entering an URI http://my.portal/hello in
browser address bar the execution of HelloWorld example is started.

100 Chapter 4 Portal Framework

Source code 4.5 Hello World-XSLT Stylesheet
<?xml version="1.0" ?>
<xsl:stylesheet xmlns=http://www.w3.org/... version="1.0">

<xsl:template match="/">
<html>

<head><title>Hello Sample</title></head>
<body>

<xsl:apply-templates select="hellotext"/>
</body>

</html>
</xsl:template>
<xsl:template match="hellotext">

<h1><xsl:value-of select="." /></h1>
</xsl:template>

</xsl: stylesheet >

4.3.1.1 WRAPPER APPLICATIONS

Generic wrappers. Using wrapper applications external information sources can
be integrated into portal. These applications, usually, contain URI of the informa-
tion source as an HTTP Parameter or as an additional path. They, alone take care
on correction of mapping, loading referenced information sources and their pars-
ing into appropriate DOM tree. This generic wrapper can be used several times
and with different applications. As an example, an XMLWrapperApplication will
be explained. It takes one XML document from the directory PortalDocu-
ments/RelativePath. Thus, one of the possible definitions of this application is:
<!—hello world demo application -->
<application name="xmlfile"
class="portal.demo.XMLWrapperApplication" path="/"
authRequired="no" loginRequired="no">
</application >
<mapping pattern="/xml*" path="/" application="xmlfile"/>

When portal and applications are initialized, Dispatcher creates one instance
of the GenericWrapper application that stores the reference to the application co-
de. The main reason for this is to be able to assign current application stylesheets
and path specification. When the document from the URI http://my.por-
tal/xml/data/hello.xml is referenced, applications with the name xmlfile,
GenericWrapper and Request are forwarded to the XMLWrapperApplication,
which reads document data/hello.xml and sends it further in as a DOM-tree.

4.3.2 JSP Applications

The developed portal prototype allows separation of document code and
style, and usage of tag libraries (refer to section 4.4.2). Java Server Pages (JSP)
technology is very convenient for these purposes. Pages written in JSP technol-
ogy are similar to Microsoft Active Server Pages [ASP], and can additionally be
represented as XML documents.

4.3 Portal Configuration and Portal Application Development 101

4.3.2.1 JASPER

JSP applications are executed using JSP processor (in Tomcat that is Jasper). It
reads and interprets source document, and out of it generates Java servlet. JSP
processor, then, using forward method from the Servlet API, dispatches to this
servlet original request object. JSP application specifies the way response is
created from the request object using the actual protocol. The output of the dy-
namically generated JSP servlet will through ServletResponse be serialized into
OutputStream. In the JSP application the way some events are processed can also
be indicated (in JSP 1.2 these events are only init and destroy, handled by
jspInit() and jspDestroy() methods). However, the most important part of a
JSP application compiled by a JSP Container is automatically generated method
_jspService(). Author of a JSP application cannot predefine either of these
methods by using scripting elements. This is done through HttpJspPage interface
(or JspPage interface if the underlying protocol is not HTTP). Servlet class that
corresponds to the JSP application has to implement HttpJspPage interface (or
to inherit the class that implements it).

JSP Container creates one JSP servlet implementation class for each JSP appli-
cation. The name of this class is implementation specific. That automatically gen-
erated servlet belongs to the implementation-dependent named package. For dif-
ferent JSPs different packages can be used, thus all those servlets have to satisfy
some basic requirements. As already indicated, JSP Container executes creation of
the servlet for the given JSP application. However, this process may include the
superclass that the JSP application author indicates using jsp directive extends.
JSP Container must check whether the superclass implements HttpJspPage and
if all the methods of the servlet interface are declared as final; at the other side,
the responsibility of the JSP application author is to provide that the superclass
satisfies the following requirements [JSP]:

§ Method service() from Servlet API calls _jspService() method.
§ Method init(ServletConfig) stores configuration data, provides access
to them using getServletConfig() method, and then calls jspInit.
§ Method destroy() calls jspDestroy().

If JSP Container detects that the provided superclass does not fit these re-
quirements, it can give ‘fatal translation error’, but most JSP containers will not
check them.

4.3.2.2 REQUESTING JAVA SERVER PAGE

Class JSPWrapperApplication is responsible for calling JSP applications in
the portal. The request reaches the application in already described way (refer to
section 4.2.4). Afrter that the following actions are performed:

§ First, from portalContext an appropriate RequestDispatcher is ac-
quired; which will transfer control over request processing to the wrapper

102 Chapter 4 Portal Framework

class (for JSP it is org.apache.jasper.servlet.JspServlet class, i.e. JSP
container).
§ Then, PortalRequest and PortalResponse objects are created, so that
the Servlet Container is informed where to find the page requested. Default
page is index.jsp. Attributes Session and User are set in the newly cre-
ated request, and can further on be accessed from the base class Por-
talJspPage (in the portal it implements HttpJspPage interface; refer to
section 4.3.2.1 Jasper); thus, they are available as implicit objects to a page.
§ Newly created request is then returned to the Servlet Container, which
forwards it to the JSP container. The latter, is then, responsible for the page
compilation) and forwarding request to the servlet, obtained by JSP applica-
tion compilation. This servlet sets the generated result into the portalRe-
sponse object and that way provides it to JSPWrapperApplication.
§ If the generated response does not contain errors, it is accepted as the re-
sult of JSP application execution, and output buffer content is forwarded to
the XML parser. The latter generates complete DOM Document, which is
then inserted into DocumentFragment and returned to the Dispatcher.

JSP applications in the portal as a result generate only the intermediate repre-
sentation in XML format. This output is, then, accepted by the JSPWrapperAp-
plication and, as a DOM tree, forwarded to the Dispatcher for further proc-
essing and transformation. The development of one JSP portal application is
illustrated by the simple HelloWorld example. Code example 4.6 shows JSP ap-
plication, which generates same output as the application 4.4. Hence, the same
XSLT stylesheet 4 5 will be used.

Example 4.6 Hello World as JSP
<?xml version="1.0" ?>
<%@ page extends="portal.framework.PortalJspPage" %>
<%@ page contentType="text/xml" %>
<hellotext>Hello World<hellotext>

When deploying JSP applications the author should have in mind that:

§ XML is generated as an output, so the XML Header has to be the part of
that output. JSP directive contentType specifies corresponding MIME-Type.
This directive does not have to be used in JSP portal applications, since only
XML output is allowed. In the example it is indicated as an illustration.
§ JSP applications, used in the portal should inherit portal.frame-
work.PortalJspPage class. This way implicit usage of User, Session and
other context objects is enabled.

The code example 4.6 (unlike its output) is not XML compliant. This is the
reason why the automated syntax checking, using DTD, has to be provided.
Code example 4.7 shows the same servlet written using XML syntax. Then both
DOCTYPE and output type element do not have to be specified.

4.4 Extensions 103

Example 4.7 Hello World as JSP with XML syntax
<?xml version="1.0" ?>
<jsp:root xmlns:jsp="http://java.sun.com/dtd/jsp_1_2">
<jsp:directive.page extends="portal.framework.PortalJspPage" />
<jsp:directive.page contentType="text/xml" />
<hellotext>Hello World<hellotext>
</jsp:root>

4.3.2.3 PROGRAMMING LOGIC

The User and Session objects are, in the page, implicitly available and can be
accessed using implicit variables portalUser and portalSession. Essentially,
as it is obvious from the example 4.8, code can reside even inside the page.

Example 4.8 embedding Java code in JSP
<color>
<% Parameter p = portalUser.getParameter("myApp","Style",

"favoriteColor");
if (p!=null)

write("Your favorite color: " !+p.getValue()); %>
</color>

4.4 Extensions

The process of application development, shown in the pervious section func-
tions well only if the code parts are small; XML output is usually not changed by
layout designer, and not frequently modified. Thus, if it is possible, the author’s
goal should be to store program logic in external components. In this manner, the
access to external data sources is simplified. Two basic alternatives are offered in
JSP: Java Beans and Tag Libraries (figure 4.14), which will, further on, be de-
scribed in more detail.

Figure 4.14 Accessing various data sources from JSP application

104 Chapter 4 Portal Framework

4.4.1 Java Beans

Java Beans are independent Java classes that are, inside the Servlet Container,
referred to as components, which can handle requests. They are a part of Java 2
Enterprise Edition and are defined by Enterprise Java Beans Specification [J2EE].
How JSP calls on a Bean object can be read in JSP specification [JSP]. Source code
4.9 illustrates one possible bean usage inside the portal.

Example 4.9 Accessing Java Bean from JSP
<nameoutput>
<jsp:useBean id="u" scope="page"

class="portal.beans.User"
type="portal.beans.User" />

your name is: <jsp:getProperty name="u" property="name"/>
</nameoutput>

4.4.2 Tag Libraries

The other possibility for component development in JSP are tag libraries. The
code is, then, executed by calling earlier defined tags. Each of those tags is im-
plemented as Java class. Groups of tags, which have similar functionalities, are
defined in the suitable tag library.

The advantage that authors get when using tags is primarily, the simplicity of
their usage. Unlike Java Beans technology, tag implementation enables access to
context and page elements. When using custom tags complex operations can be
reduced to a significantly simpler form than with beans. Then, custom tags require
much more initial work than beans; and finally, beans are often defined in one and
later on used in different servlets and JSP applications, while custom tags-usually
define more self-contained behavior [HALL00]. Thus, custom tag usage is recom-
mended when significant amount of information between the code and the page
is transferred.

In order to use custom JSP tags it is necessary to define three separate compo-
nents:

§ tag handler class that defines tag behavior,
§ tag library descriptor (TLD), file that maps the XML element names to the
tag implementations, and
§ JSP file that uses the tag library.

4.4.2.1 TAG LIBRARY DESCRIPTOR (TLD)

The description of the tag library is stored in XML document named Tag Li-
brary Descriptor (TLD). This file is used by a JSP Container to interpret tags, from
the tag library it describes. TLD is, also, used by CASE tools for JSP creation, that
work with tag libraries; as well as authors, who manually create JSP applications.
TLD contains some fixed information on the tag library as a whole, as well as on

4.4 Extensions 105

each of the tags (<name/>,<tagclass/>,…) information on JSP Container
(<jspversion/>), and tag library (<tlibversion/>) version and information on
all the actions defined in that library [JSP].

Example 4.10 A part of portal.tld
<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC...
<taglib>

<tlibversion>1.0</tlibversion>
<jspversion>1.2</jspversion>
<shortname>portal</shortname>
...

<tag>
<name>list</name>
<tagclass>portal.taglib.ListTag</tagclass>
<bodycontent>JSP</bodycontent>
<info>A tag that generates a dropdown from a list </info>
<attribute>

<name>name</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
<attribute>

<name>defaultSelection</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

...
</taglib>

In the code example 4.10 a part of the TLD for tag library portal is shown. It
defines <list/> tag, which function and usage are described in the next section.
The meaning of specific tags can be found in [HALL00]. In order to make tag li-
brary accessible to the portal, it has to be indicated in the configuration file of the
PortalServlet, web.xml. For example, the description of tag library advisor is
shown by example 4.11.

Example 4.11 Description of the tag library in web.xml
<taglib>

<taglib-uri>
advisor

</taglib-uri>
<taglib-location>

/WEB-INF/advisor.tld
</taglib-location>

</taglib>

To make the tags from the tags from tag library available to a Portal JSP ap-
plication it has to be specified using, either directive:
<%@taglib uri="http://jakarta.apache.org/taglibs/utility" prefix="util"%>

by indicating suitable URI and prefix, or using namespace, for JSP application
written in XML-syntax, i.e. in the following way:

<jsp:root
xmlns:jsp="http://java.sun.com/dtd/jsp_1_2"
xmlns:user=" http://jakarta.apache.org/taglibs/utility">

106 Chapter 4 Portal Framework

4.4.2.2 TAG HANDLER CLASS

When defining a new tag, first task is to define Java class that tells the system
what to do when it sees the tag. This class must implement javax.ser-
vlet.jsp.TagSupport.Tag interface. This is usually accomplished by extend-
ing the TagSupport or BodyTagSupport class. In the code example 4.12 class
handler for indicated <list/> tag, is shown.

Class ListTag inherits BodyTagSupport class; this means that it can manipu-
late its body (<list>body</list>). The most important part of the processing is
executes method doAfterBody(), which returns SKIP_BODY value, showing that
no further processing is needed. The portal application ChooseColor.xjsp
(shown in example 4.13) uses this tag to offer identified user selection of back-
ground color in the dropdown list. Since the indicated code produces XML out-
put, an XSLT document, needed to format that output into an HTML page, is
shown in the extension (MyDropDown.xsl). Figure 4.15 shows one view on that
web application in browser. In this example, the colors (data) are given in static
XML format; so the use of this tag is not completely justified (it would be must
simpler to change it with HTML <select/> tag).

Example 4.12 ListTag.java
package portal.taglib;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.BodyContent;
import javax.servlet.jsp.tagext.BodyTagSupport;
public class ListTag extends BodyTagSupport {

private String name;
private String defaultSelection;
private StringBuffer buffer;
public void setName(String name) {

this.name = name;
}
public void setDefaultSelection(String defaultSelection) {

this.defaultSelection = defaultSelection;
}
public int doAfterBody() throws JspException {

String body = bodyContent.getString();
bodyContent.clearBody();
body =resetSelection(body);
if (defaultSelection!=null){
int indexOfCon= body.indexOf(defaultSelection)+

defaultSelection.length();
if (indexOfCon - defaultSelection.length()>=0) {

body = body.substring(0, indexOfCon+1) +
" selected='selected'" +
body.substring(indexOfCon+1);

}
}
if (body.indexOf(name==-1))
buffer = new StringBuffer(

"<" + name + "> " + body + "</" + name + "> ");
bodyContent.print(buffer.toString());
bodyContent.writeOut(getPreviousOut());
return SKIP_BODY;

}
}

4.4 Extensions 107

But, even this use gives the designer total freedom to show information, since
just by exchanging the <select/> form in XSL template; can give radio buttons
instead of dropdown.

Example 4.13 ChooseColor.xjsp
<%@ taglib uri='portal' prefix='portal' %>
<%@taglib
 uri="http://jakarta.apache.org/taglibs/utility" prefix="util"%>
<%@page import="portal.personalization.*, portal.framework.*" %>
<util:If predicate="<% request.getParameter("color")!=null %>" >
<%
portalUser.setParameter
("JSPHello", "Style", "bgColor", request.getParameter("color"));
String backColor = portalUser == null?"red":
portalUser.getParameter("JSPHello", "Style", "bgColor").getValue(); %>
</util:If>
<portal:list name="choosecolor" defaultSelection='<%= backColor%>'>

<color name="red">red</color>
<color name="blue">blue</color>
<color name="green" >green</color>
<color name="yellow">yellow</color>
<color name="orange">orange</color>

</portal:list>
b MyDropDown.xsl
<?xml version="1.0"?>
...
<xsl:param name="Style.bgColor" select="string('#CC3366')"/>
<xsl:template match="/">

<html>
<head>
<title>Choose Background Color</title>
</head>
<body bgcolor="{$Style.bgColor}" text="orange">
<form name="form1" method="get" action="ChooseColor.xjsp">
Choose color for your background
<select name="color" size="1">

<xsl:attribute
name="onChange">this.form.submit()</xsl:attribute>
<xsl:apply-templates select="*" />
</select>

</form>
</body>

</html>
</xsl:template>
<xsl:template match="choosecolor">

<xsl:for-each select="color">
<option>

<xsl:attribute name="value">
<xsl:value-of select="."/>

</xsl:attribute>
<xsl:if test="@selected = 'selected' ">

<xsl:attribute name="selected">selected</xsl:attribute>
</xsl:if>
<xsl:value-of select="@name"/>

</option>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

It is, also, possible to modify ChooseColor.xjsp, in such manner that the
data generated in the list tag body is generated dynamically; for example, by
inserting scriptlet that reads data from the database or generates them some

108 Chapter 4 Portal Framework

other way. The main reason for this possibility is that Servlet Containers, before re-
turning the tag to its handlers, evaluate the content of the tag body. In this man-
ner, previous example, instead of static XML list, can contain the following lines:
<portal:list name="choosecolor" defaultSelection='<%= backColor%>'>

<%= generateColors(10) %>
</portal:list>

where method generateColors(int n), for example, generates list of n ele-
ments with random color distribution. To evaluate tag body attribute <bodycon-
tent/> in the tld tag description, has to be set on JSP.

Figure 4.15 One view on the ChooseColor.xjsp application

I BodyContent

Variable bodyContent is implicit variable, containing the body of the tag, in a
string format, that can be manipulated. It is an instance of the BodyContent
class, which is a buffered writer. This buffer can be used to manipulate a tag‘s
body content in any fashion. The BodyContent class extends JspWriter, which
not coincidentally, is the type of the implicit out variable, which writes directly
to response stream. Servlet Containers maintain a stack of BodyContent objects so
that a nested tag does not overwrite the body content of one of its ancestor tags.
Each BodyContent object maintains a reference to the buffered writer, which is
either body content or the implicit out variable, underneath it on that stack. That
writer is known as previous out, and is referenced by calling method BodyTagSup-
port.getPreviousOut()). The method of functioning of this stack with Body-
Content objects is described in detail in [GEAR01].

4.4.2.3 NESTED TAGS

As already indicated the tags have access to the context of the page, they are
part of; therefore, by storing the objects in a particular scope, tags are enabled to
communicate among themselves. Communication is executed through the page
context. Nested tags can do the same, but they can also communicate directly
with the static findAncestorWithClass(Tag, Class) method from TagSup-
port class. This method, for an instance of Tag class (usually this) and class
name (Class), which instance is an ancestor of the tag, finds that ancestor in the
page context. The consequence of this fact is that nested tags can, through page
context, directly communicate with their ancestors.

4.4 Extensions 109

4.4.2.4 DBTAGS TAG LIBRARY

DBTags custom tag library is a part of the Jakarta Taglibs project [JTL] and
contains tags that can be used for reading and writing in SQL database. It re-
quires Servlet Container, which is compliant to JSP 1.2 specification. It supports
utilization of DataSource objects, which are not part of J2SE; therefore, it is nec-
essary, in order to use them to have J2EE or Optional API for JDBC 2.0 installa-
tion. It does not support transactions. Although this tag library is not complete,
here will be explained shortly some of the frequently used tags. This is due to
utilization of this library in the applications, deployed for ETH World portal pro-
totype, and the fact that tag CustomEventListTag from the organizer tag library
(refer to section 5.4) extends tag <preparedStatement/> (for details reference
[DBTAG]). Each of these tags actually wraps the call to some of the classes from
java.sql package.

I Tag <connection/>

Tag <connection/> accepts database URI, which can be used to connect to
the (Connection) through DriverManager:

II Tags <statement/> and <preparedStatement/>

There are two ways to query database, by using <statement/>, or <pre-
paredStatement/> tag. To query database, it is necessary to open <statement>
tag, pass it SQL query (<query/>) and then:

§ execute (<execute/>) statement, if writing, updating or deleting from da-
tabase is performed, or
§ call <resultSet/> tag, to iterate through results of the executed state-
ment.

Tag <preparedStatement/> is, in a way, sophisticated format for SQL query
generation. Instead of putting values directly into SQL statement, it is possible to
write '?' symbols on the places where the values should be put, and then use par-
ticular tag group for setting concrete values.

III Tag <resultSet/>

The ResultSets are products of the SELECT statement execution. Tag <re-
sultSet/> automatically goes through each tuple of the result set. To access each
of the tuple’s attribute value <getColumn/> tag is used; it either shows or saves
the value of the attribute in the String format. It is also possible, to save all the
results in one ResultSet object, under name specified by the id tag attribute in
the page context. The latter is possible when the attribute loop, which standard
value true indicates that the tag body should be executed once for each Result-
Set row (tuple), is set to false.

110 Chapter 4 Portal Framework

Utilization of these tags is completely intuitive (refer to code example 5.17
AddEvent.xjsp). However, all these functionalities, and a few more are now
covered by the standard edition of Jakarta Taglib project ([JSTL]).

4.4.3 JDOM

JDOM provides a complete light-weight view of an XML document, as well as
its behavior. JDOM includes standard input/output behavior suitable for creating
a JDOM Document object from existing XML document and writing a Document’s
data to any specified location. Although the main objective of this API is to solve
the deficiencies, widely recognized in SAX and DOM API, JDOM is not based on
either of them. When using JDOM, author manipulates the XML document,
which has a tree structure. As it is adjusted to the Java programming language,
JDOM does not provide all the idiosyncrasies of DOM, but allows very quick
parsing and output. JDOM is comprised of concrete (and not abstract) classes for
accessing element collections, attributes and other JDOM constructions.

DOM

JDOM

Figure 4.16 Comparing class diagrams for DOM and JDOM

Figure 4.16 shows class diagrams for DOM and JDOM. JDOM Document
structure does not provide the strict tree representation as XML tree. This is the

4.4 Extensions 111

consequence of not supporting the Node interface. JDOM accesses directly each
tree element. Namely, when an element is accessed the Element class is used,
and when an attribute is accessed class Attribute. Unlike this, DOM, always
first uses Node class; thus additional cast to the appropriate class is required. It
also does not use NamedNodeMap, NodeList od Attributes classes to access ele-
ment collections, instead standard Java classes List and Map, …, are used (see
[MCL00] for details). All these features make JDOM significantly faster and sim-
pler to use, and the cost is paid by not being compliant to standards. The code
example 4.14 shows example from the example 4.1 where DOM is replaced by
JDOM, which illustrates most of the differences indicated.

JDOM documents can be created from many different sources. For these pur-
poses classes from the org.jdom.input package are used. They generate JDOM
Document from different source formats (File, URL, InputStream, Input-
Source…). All these classes need to implement methods from the Build inter-
face. Currently, JDOM provides two implementations, SAXBuilder and DOM-
Builder. These allow current standard-based SAX and DOM parsers to be used
for creating JDOM Document objects. Neither of those parsers has to provide ad-
ditional JDOM support for their current offerings. However, when selecting
parser one should have in mind that all current DOM parser implementations
use SAX to create a DOM tree, since it is much faster. For this reason, using DOM-
Builder to create a JDOM Document object does not make much sense, except in
the situations, when it is created from the existing DOM tree.

Example 4.14 JDOMParser
import org.jdom.*;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;
import java.util.*;
...
public static void main(String args[]){

Document configDoc = null;
try {

SAXBuilder builder = new SAXBuilder(false);
configDoc = builder.build("configuration.xml");
Element
dbconn=configDoc.getRootElement().getChild("dbconnection");
List attributes = dbconn.getAttributes();
Iterator i=attributes.iterator();
while (i.hasNext()){

Attribute currentAttr = (Attribute)i.next();
String name = currentAttr.getName();
dbconn.addContent(new Ele-
ment(name).addContent(currentAttr.getValue()));

}
attributes.removeAll(attributes);
XMLOutputter xmlout= new XMLOutputter();
xmlout.output(configDoc.getRootElement(),"configuration.xml");

}catch (JDOMException e) {
System.out.println("readConfiguration: " + e.getMessage());

}
}catch(java.io.IOException ioe){

ioe.printStackTrace();
}

}

112 Chapter 4 Portal Framework

4.5 Cocoon

Neither JSP 1.0, nor JSP 1.1 implementations brought expected automation of
the HTML page modification process; even though the separation of concerns
into content, style, and programming logic was the part of both specifications.
This requirement started to satisfy applications written in JSP 1.2, which allow
Bean and tag library utilization (for example, ETH World portal framework).
First “product” that appeared on the market solving this problem is Cocoon 2.0
publishing framework [CO02]. Although there exists similarity in concepts, XSP
and JSP are still not completely compatible technologies (figure 4.17).

Figure 4.17 Cocoon and JSP

Web Publishing Framework. As the web server is responsible, for returning the
file requested with specific URI, web publishing framework should, on a similar
request, respond with the published version of that file. Published file denotes a
file that is previously, probably, transformed using XSLT, changed in the applica-
tion or converted in some other format (PDF, SVG…). User does not see raw data
(i.e. XML document), used to produce published result, nor explicitly requests
publishing current document [MCL00]. Basic criteria that this framework should
satisfy are: stability and platform independence, simple integration with other
XML tools, and APIs.

Unlike ETH World Portal framework, Cocoon does not have fixed dataflow in
the central component, but allows pipeline definition. XML document is passed
through the existing pipeline, through several levels of document transformation.
Each pipeline starts with the generator, is continued by one or more transformers
and finished with a serializer (figure 4.18). Besides normal processing, each pipe-
line can define its error handling. Additionally, it is possible to use matchers and
selectors, for selecting the appropriate pipeline. Aggregation enables building the
pipeline hierarchy. Utilization of views enables definition of output point for the
pipeline. The content of XML document is represented as stream of SAX events.

Pipeline for each URI is defined in sitemap.xmap file, and can look like this,
for example:

4.6 Commercial Portals 113

<map:pipeline>
<map:match pattern="samples/helloworld.xml">

<map:generate type="file" src="samples/helloworld.xml"/>
<map:transform type="xslt" src="samples/helloworld.xsl"/>
<map:serialize/>

</map:match>
</map:pipeline>

where reference to http://mydomain.org/samples/helloworld.xsl starts the
generation of SAX representation of the helloworld.xml file, which is placed in
mydomain_context_path/samples directory; then, its transformation, using
hello-world.xsl, situated in the same directory, and finally serialization into
HTML format, to show it in the default browser.

Figure 4.18 Cocoon pipeline

This is off course, the simplest possible example. As suggested Cocoon is
much more complex, where this complex programming logic is executed by eX-
tensible Server Pages (XSP), that allow clear definition of logic-content bounda-
ries (see [CO02]).

4.6 Commercial Portals

Currently, at the market there are tons of commercial products that help pro-
grammers in the portal development process. These products offer development
environments with preprogrammed portal components that together with con-
tents, custom web applications, and back-end systems, can be adapted and com-
bined into final product. The portal product market has matured significantly
since its birth in 1998. In the early days of this market, "pure-play" vendors were
the only path to a portal product. Subsequently, middle-tier vendors and large
independent software vendors (ISVs) entered the market in force. As the figure
4.19 shows, last few years the portal product market is constantly changed, and
there is a major shift in market momentum.

114 Chapter 4 Portal Framework

Figure 4.19 contains the portal product Magic Quadrants for last three years
[GG00-02]. "x" axis is completeness of vision axis, which is estimated on the basis of

the complete vision of the vendor
and not based on the quality of
the currently available product.
"y" axis measures the ability to
execute, and not the way it is ac-
tually executed. Both measures
are related to the future that
product offers, and not to current
situation. Four different vendor
groups can be recognized. Lead-
ers have good technical solutions
and very convincing visions.
Among vendors from this group
SAP (TreeTier) and IBM are lead-
ing. Challengers are the vendors
that offer products that are too
concentrated on their own under-
lying technology, which does not
actually follow the vision of the
generic portal. Visionaries have
good ideas, but lack stability and
audience to have better results on
"ability to execute" axis. Niche
players are vendors that have
strong visions in other areas,
while portals are just their addi-
tional products.

Having in mind big changes
that are happening over years on
the portal products market, in
this thesis just IBM and SAP por-
tals will be shortly represented,
since according to Gartner group
reports, they have been altering
on the leader position, and are
very expensive products. At the
end as some kind of parallel to
the ETH World portal framework
prototype a short introduction to
uPortal, as a joint initiative from
about twenty American universi-
ties to make a campus pocket edi-

2000

2001

2002

Figure 4.19 Magic quadrants of portal producers

4.6 Commercial Portals 115

tion will be made.

4.6.1 IBM WebSphere Portal

WebSphere Portal Server provides open, flexible and scalable infrastructure
for creation and development of different portal categories that can be accessed
from numerous desktop and mobile devices. Figure 4.20 shows complete archi-
tecture of the WebSphere portal solution. Portal clients access portal over HTTP
protocol, directly or through corresponding proxy servers or gateways (for ex-
ample, WAP gateway or voice gateway). When aggregating pages for portal us-
ers, the portal invokes all portlets that belong to a user’s page through the Portlet
API. There are two basic portlet types:

§ Local Portlets run on the portal server itself. They are deployed by install-
ing Portlet Archive files on portal servers and are invoked by the portal server
directly through local method calls. As local portlets run on the portal server
itself, they provide minimal latency times. However, installing portlets usu-
ally requires assurance that the portlets are not erroneous or even malicious.
§ Remote Portlets run as web services on remote servers. They are published
as web services in a Universal Description, Discovery and Integration
(UDDI) directory, to be easy to find and bind to. A remote portlet web ser-
vice is bound by adding a Portlet Proxy to the portal’s portlet registry when
an administrator finds and selects the remote portlet web service in the
UDDI directory. Portlet proxies are generic local placeholders that invoke
portlets located on remote servers through a Remote Portlet Invocation
(RPI) protocol based on the Simple Object Access Protocol-u (SOAP).

Figure 4.20 WebSphere PortalServer architecture including web services and re-

mote portlets

116 Chapter 4 Portal Framework

4.6.1.1 PORTAL ENGINE

WebSphere Portal Server provides a pure Java portal engine, which runs on
multiple hardware platforms and operating systems. The main responsibility of
the portal engine is to aggregate content from different sources and to serve the
assembled content to multiple devices. Portal engine separates the portal page
into portlets (discrete components), which in turn enables faster, easier, and spe-
cialized development for the overall portal site. This means that the details on
portlet presentation are decoupled from the ones of overall page:

§ In front of the portal engine is an authentication component such as stan-
dard WebSphere Security, WebSEAL-Lite, or a third-party authentication
proxy server.
§ The central component in the portal engine is the portal servlet. It examines
the URI and header fields of each request and invokes the appropriate han-
dler. The portal servlet handles the request in two phases. In the first phase,
portlets have an opportunity to send event messages to other portlets. (for
example, portlets might send events in order to update data that will be ren-
dered in the next phase.).
§ In the second phase, the appropriate aggregation module for the user de-
vice renders multiple portlets in a single page. The aggregation modules ac-
cumulate information from each portlet, add standard decorations around
the portlet (such as a title bar, edit button, and enlarge button), position it on
the page, and generate the overall page markup.
§ Access to portlets is controlled by checking access rights during page ag-
gregation, page customization, and other access points such as viewing the
portlet in its maximized state.

Figure 4.21 Web Sphere Portal Engine

WebSphere Portal Server currently has three aggregation modules: HTML
component produces pages for desktop computers and other devices with HTML

4.6 Commercial Portals 117

browsers; WML component produces WML content for Wireless Access Protocol
(WAP) devices, such as mobile phones. iMode aggregation component produces
cHTML markup (for mobile devices in NTT DoCoMo network).

Each user can customize a unique home page for each device, selecting the
content and applications that are most useful on the device. When the home page
is requested, page aggregation works by first detecting the type of device that is
making the request, and then assembling the portlets which render their contents
in the appropriate markup language.

4.6.1.2 PORTLETS

Portlets are visible active components that see on their portal pages. Similar to
the windows on the PC desktop, each portlet
covers a part of the browser, or PDA screen,
where it shows its results. Portlets can be sim-
ple applications, for example e-mail, or very
complex like recommending courses, which
would be interesting to a particular student in
the next semester.

Portlets are usually small applications.
However, they do not give multiple outputs.
Instead, portlet is often used for periodical ac-
cess to application data or for placing popular
information next to very important information from other applications. For the
user, portlet is an information channel or application that the user can subscribe
to, add it to his/her portal page and configure, so that it shows personalized con-
tent. For the content provider, portlet is a tool to publish his contents. For the por-
tal administrator, portlet is a content container, which can be registered in the
portal, so that the users can select it and put it onto its pages. For portal, portlet is
a component that renders on some of its pages. From the technical point of view
portlets are very similar to Java servlets, except that they only return a subset of
the output page. Portlets use Portlet API, which is similar to Servlet API. How-
ever, portlets are executed in the portal environment, while servlets are executed
as standalone applications in the Servlet Container. While servlets communicate
directly to their clients, portlets are referenced indirectly, through portal applica-
tion.

4.6.1.3 PERSONALIZATION

§ Portal services are features that WebSphere Portal Server leverages to
provide a complete portal solution that includes features such as personal-
ization, search, content management, site analysis, enterprise application in-
tegration, collaboration, Web services, and so on. Since the topic of this the-
sis is personalization in the portal environment, in the following text there

Figure 4.22 Portlet look

118 Chapter 4 Portal Framework

just this element is described (for detailed descriptions of all the other ele-
ments see [GAN00]). Three different personalization techniques are imple-
mented:
§ Customization is partially provided through administrative setup, which
defines standard parameter values (default settings) and the portlet access
rights, and by explicit user actions to change the content and layout of the
portal home page.
§ the rules engine uses business logic to select the contents that will be
shown to the particular user;
§ While recommendation engine utilizes CF technology (refer to section
3.1.4.2) to select content based on common interests or behaviors.

The portal server, the rules engine and the recommendation engine share user
profile and content repositories. Recommendation engine is comprised of differ-
ent tools, which utilize CF technique to analyze data, including: preference engi-
ne - tool based on the explicit user actions, transaction engine (purchase engine),
click stream engine, product matching engine, and item affinity engine, which is
not a CF technique, but is based on Market Basket statistic (see [GAN02]).

4.6.1.4 WEB SERVICES

The concept of web services has been developed to allow business applica-
tions to communicate and cooperate over the Internet. It allows applications to
find web services in a standardized directory structure and bind to these services
with minimal human interaction. Global service registries are used to promote
and discover distributed services. A client that needs a particular kind of service
can make a query to the global service registry to find services that suit its needs.
In order to be easy to use, the mechanisms for publishing portlets as remote port-
let web services, finding remote portlet web services, binding to them and using
remote portlets must be integrated seamlessly into portal products (see
[SCHA01] for details).

4.6.2 SAPPortal

From the figure 4.23 it is obvious that the portal infrastructure is one of the
key building blocks of mySAP Technology for Open e-Business Integration. It
provides user-centric collaboration. Alongside, mySAP technology [SAP01] in-
cludes: web application server, which is a base for development of specific my-
SAP.com solutions, exchange infrastructure that supports process-centric col-
laboration, and basic infrastructure services, which include: security,
globalization and IT landscape management. The SAPPortals has integrated four
different technologies into its portal infrastructure to access different information
sources, which user needs in his/her work . These information sources include:
applications and legacy databases, business intelligence, unstructured data, and
web contents and services. Figure 4.24 illustrates portal server architecture. It

4.6 Commercial Portals 119

also shows, data flow from the moment a client sends request to some informa-
tion source, using the portal. It will be explained on a call to a simple .NET web
application, in the case of HTML client. The Portal client's Web browser sends a
request to display a web page (comprising iViews). The iViewServer calls the iView
application through a URI. The iView application reads the data from the data
source and processes it. The iView application sends the result to the iViewServer
in HTML/XML format. For "rendered" .NET iViews, the iView application file
(ASP, CGI etc.) reads the data from the data source, processes it, and sends it as
SAP Portals XML (contains HRNL Tags) to the iViewServer, which converts it
into HTML and sends to the Portal client. The Portal client displays the iView in
the Web browser

Figure 4.23 Building blocks of mySAP technology

4.6.2.1 PAGE BUILDER

The Page Builder component assembles pages, which will be rendered in the
portal. It gets information about the navigation between pages and the layout of
the pages from the roles assigned to a user. It gets information about the naviga-
tion between pages and the layout of the pages from the roles assigned to a user.
Roles describe user’s functions. Roles are assigned work sets, which in a row,
consist of iViews. From the semantic perspective, the primary role function is to
provide navigational hierarchy for pages, work sets, iViews and application user
interfaces, while the function of each work set is the aggregation of all the impor-
tant iViews with the goal of task execution.

4.6.2.2 IVIEW SERVER

iView Server connects to multiple information sources through iView Connec-
tor using different protocols and APIs (for example, OLE DB, HTTP, SOAP…).
The iViewServer provides the following functions: administer iViews and provide
their content from various sources, enable development of new content, allow

120 Chapter 4 Portal Framework

import of new content such as roles and iViews from the iViewStudio, maintain
cache of iViews' content. However, basic iViewServer’s function is producing the
HTML content of iViews and pages. It also offers a delivery mechanism for web
services. Communication through WSDL allows information to be passed
through to the iViewServer from the service, and delivery of iViews as SOAP com-
pliant objects permits the proper display of web service interfaces.

Figure 4.24 Portal Server architecture

The iView is a presentation Web service that aggregates content from a wide
array of different applications. There are two different types of iViews: inherited
and enhanced. Inherited iViews access information directly as it would appear in
the accessed source, whereas enhanced iViews present the information in the
same consistent look and feel as the portal by using a consistent XML format.

Channels fulfill two functions. First, they act as a central access point to all
iViews available to the administrator for the construction of work sets. Second,
channels are available to end users as an access point to iViews that are not part of
a work set.

4.6.2.3 APPLICATIONS AND LEGACY DATABASES

Unification and iViews have been designed to access legacy and transactional
systems; iViews provide awareness of events and enable the rapid creation of in-
formation building blocks from enterprise applications. iViews can be written in
any programming language, yet they will generate consistent XML based output.
Unification provides contextual navigation that greatly reduces the time it takes to
resolve any event users become aware of.

4.6 Commercial Portals 121

IV Unification

Unification allows data traditionally stove-piped in various sources to be re-
trieved and correlated on an ad hoc basis with any other information source. This
access and correlation across a variety of information sources is provided
through the unification server, through its key components, application and da-
tabase unifiers. Unifiers control the application architecture, user interfaces, secu-
rity, and all customization inherent in an application while surfacing the applica-
tion with HyperRelational technology (the technology that uses unified object mo-
del). The unifier is a truly transparent wrapper around the application, providing
access and Drag&Relate™ capabilities. At the front end, the user is working from
the project’s iPanel in the Portal, and intuitively querying data sources. This con-
sists of the user dragging visual elements representing data and dropping them
onto other such elements; interrelating the data to create queries dynamically.
Figure 4.25 illustrates Unification Server architecture. Each machine containing a
unifier requires a web server installation. The Unification Server is a COM -based
extension to the web server.

When the user performs a Drag
&Relate action, client sends a HRNP
(HyperRelationalc Navigation Proto-
col) request to the Unification
Server through HTTP. The Unifica-
tion Server resolves the relationship
between the drag source and the
drop target, and queries the data-
base to determine the record set.
Then it redirects the result set to the
database server and launches the
screen that appears in the browser.

The Unification Server features
a repository of metadata, it has ex-
tracted from the database, a Hyper-
Relational OLE DB provider, a secu-
rity mechanism that supports LDAP -based directory servers (refer to section
2.5.10.1), and ASP applications, which running on Microsoft Internet Information
Server, retrieve XML and display results in HTML.

V Security

User management and security services are integrated in such manner that
single sign-on mechanism is enabled (refer to section 2.5.10.1). Since each user
can have more than one role in the organization, portal grants access to impor-
tant services by aggregating access rights that are defined for each role.

Figure 4.25 Architecture of the unification

server

122 Chapter 4 Portal Framework

VI Personalization

Personalization includes just two elements: content customization and user
recognition. Customization can be defined in three ways: at the administrator
level, the user level, and automatically through predictive technology. Adminis-
trators can define personalization for each user by changing the design of the
portal structure for different users. Users can also personalize their content
through the browser, although the administrator, using the options mentioned in
the previous paragraph, always controls how much they can customize their
screens. Users can change the location and order of pages, change the iView or-
der, and build their own role using iViews available through channels. Predictive
technology allows for automatic personalization based on the user, their location,
or the event being handled. Some of the qualities the portal can leverage include
the user type, the browser type, the device type, whether the user is outside or
inside firewall, and the bandwidth of their connection.

4.6.2.4 BUSINESS INTELLIGENCE

The business intelligence solution provides a complete, open, end-to-end ana-
lytics platform that can assist in aggregating information to simulate the results
of current actions on future data. Standard interfaces bring data in to the data
warehouse from external online transaction processing (OLTP) systems, applica-
tions (for instance, marketplaces), and data providers using an extraction, trans-
formation, and load (ETL) process. This infrastructure also monitors and optimizes
business processes and provides predefined business scenarios and key perform-
ance indicators. This information can be viewed in a variety of ways, through the
portal (SAP Business Explorer, iViews combined with 3rd party BI tools, Microsoft
Excel…); it can, also, be unified, which allows users to correlate the important
trends in the warehouse with information available in the organization.

4.6.2.5 UNSTRUCTURED INFORMATION

Some of this information needs to be aggregated, classified, and disseminated
to relevant parties within the organization. Search, version control, multiple pub-
lishing methods, and flow control of document publishing from and to the portal
are also critical for knowledge management solution. The knowledge manage-
ment system within the portal solution is accessed through a single interface.
This interface conforms to WebDAV standard. This interface provides a front-end
for multiple services, which administer and grant easy access to a variety of
documents, through Knowledge Management (KM) solution. A repository within
KM infrastructure stores the pointer to documents in a folder hierarchy, while
versioning functions and subscription notification ensure that users are notified
of the most recent document. A search-and-retrieval engine, that incorporates
both simple and advanced search techniques, accesses information from both the

4.6 Commercial Portals 123

hierarchy of documents within the repository and from any outside source de-
fined by the administrator.

4.6.2.6 WEB CONTENTI I SERVICES

Yahoo! offers an unmatched collection of content and services on the web.
The portal connects to the Yahoo! servers directly, instead of scraping the pages
to present information to the users. This means that as the content and structure
of Yahoo! changes so will the information in the portal. It also means that any
content that might be particularly prone to a change in URI, such as iViews that
might scrape content from a Yahoo! site, are unaffected by any change in the
varying structure of the site.

4.6.3 UPortal

Unlike the previous two, enterprise portals, uPortal is an open-source institu-
tion information portal which is independently deployed by approximately
twenty American institutions for higher education (JaSIG [JaSIG]). This group se-
es institutional portal as a limited and adapted version of that institution on
web... campus pocket edition. Portal technology enriches web campus with the abil-
ity to adapt and form virtual communities. When customizing, each user defines
unique and personalized view on the web campus. Community growing tools,
including chat, forums, and surveys and so on, build relationships between cli-
ents and the campus. uPortal is an activity based on open standards using Java,
XML, JSP and J2EE.

4.6.3.1 PRESENTATION ASSEMBLY

The primary function of the framework is to provide efficient and flexible en-
gine for assembling a presentation. Given a set of information sources (channels),
and a recipe on how to arrange and frame them (stylesheets), uPortal framework
coordinates the compilation of the final document.

The starting point for any presentation assembly is always an abstract organi-
zation of channels: the userLayout document. The assembly process transforms
the userLayout document in three major stages to obtain the final document in a
desired markup language (figure 4.26).

The first stage translates an abstract userLayout hierarchy into the structural
terms of the final presentation. That translation is termed structure transformation,
and its logic is defined by the structure stylesheet. For example, the structure
stylesheet for the default tab&column presentation will translate abstract user
layout structure into a structure of tab and column elements. After the structure
transformation, uPortal initiates rendering cycles of the channels that will be in-
corporated into the final presentation.

124 Chapter 4 Portal Framework

Figure 4.26 Information flow

The second stage of the assembly process will translate the result of the struc-
ture transformation into a target markup language. This translation is termed
theme transformation, and its logic is defined by the theme stylesheet. For ex-
ample, default nested-tables theme transforms a document produced by the
tab&column structure transformation (a structure of tabs, columns, etc.) into a set
of nested HTML tables that visually resemble tabs and columns. The content pro-
vided by each individual channel will be incorporated into the result of the
structure transformation.

The final stage serializes the result of the theme transformation together with
the channel content into a stream of characters according to the rules of the target
markup language and media.

Figure 4.27 illustrates the system components that take part in the presenta-
tion assembly. An entry point into the uPortal is PortalSessionManager. That
is a J2EE servlet, conforming to the specification version 2.3. It is responsible for
identifying and managing incoming HTTP requests and dispatching them to cor-
responding UserInstance objects. UserInstance is an object that encompasses
all of the information for an individual user. It contains UserLayoutManager and
ChannelManager objects for the user’s session. It also bares the responsibility of
arranging the rendering pipeline. UserLayoutManager maintains references on
userLayout document and userPreference object. It mediates any changes
made to the layout or preference objects for the current user session. Object
ChannelManager maintains instances of channels for the current session. It is re-
sponsible for distributing runtime information to the channels and generating
ChanelRenderer objects. It also caches information on channels. ChanelRen-
derer objects are responsible for driving rendering cycles of individual channels.

4.6.3.2 CHANNELS

Channels are the unit sources of information for the uPortal. The framework
organizes channel behavior to produce a coordinated output of the content pro-
vided by them. uPortal framework provides channels with the means to achieve
their goals, but does not try to enforce how things are done. Channels are Java
objects implementing org.jasig.portal.IChannel interface. They are stateful

4.6 Commercial Portals 125

entities, and spend most of their lifetime in a rendering cycle. Administrative life
of a channel consists of the following phases:

•modification
•persistence

•event handling
•control

parameter parsing
caching

Channelshttp request

JSP out

userLayoutManager

UserInstance

ChannelIncorporationFilter

ChannelManager

HeaderIncorporationFilter

HeaderChannel
structuredLayout

pageContent

finalDocument

userLayout

request
parameters

DOM

ru
nt

im
e

da
ta

•modification
•persistence

•event handling
•control

parameter parsing
caching

Channelshttp request

JSP out

userLayoutManager

UserInstance

ChannelIncorporationFilter

ChannelManager

HeaderIncorporationFilter

HeaderChannel
structuredLayout

pageContent

finalDocument

userLayout

request
parameters

DOM

ru
nt

im
e

da
ta

Figure 4.27 uPortal components

§ Creation: At this phase the code for the channel class and all of the neces-
sary resource files are created and a channel publishing document (CPD file) is
produced. CPD files provide descriptive information about the purpose of
the channel, specify the channel Java class, describe configuration parame-
ters, and outline the workflow of the publishing and subscription process for
this channel. The above tasks are usually carried out by the channel author.
Upon the completion of this phase, the channel can be distributed to the
uPortal installations.
§ Registra tion: When an administrator of an uPortal installation acquires a
new channel, the channel has to be registered with the system. During the
registration process, the portal is made aware of the channel’s existence, and
the channel is assigned channelTypeId.
§ Publishing: In order for a registered channel to become available for sub-
scription by uPortal users, it has to go through a publishing process. During
this process channel configuration is determined by assigning values to the
channel’s parameters. Such channel configuration is assigned a chan-
nelPublishId. A published channel is then placed in taxonomy of channel
categories.
§ Subscription: uPortal users can go through a subscription process to insert
a published channel into their personal layouts. Subscription process final-
izes channel configuration by assigning values to all of the necessary chan-

126 Chapter 4 Portal Framework

nel parameters. A subscribed channel is identified by a channelSub-
scribeId that is unique within the scope of the user’s layout.

4.6.4 Conclusions

The architectures of most of the currently available systems, shown in previ-
ous sections, indicate that the concept and architecture of ETH World portal
framework do not fall behind actual world trends, and were pretty avantgarde at
the time of their creation (see [JAUS01]). Although, both IBM WebSphere and
SAPPortals systems offer numerous, already implemented options, the tradeoff
between the price and platform independence, is still not affordable in the aca-
demic environment. One should have in mind that open architectures of both,
uPortal and Cocoon, open-source frameworks, allow almost the same possibilities,
but on incomparably lower price. Thus, the prototype, described in this master
thesis, relies on standard Java tag libraries, as another open-source solution. Al-
though, neither uPortal, nor Cocoon, at the moment of prototype implementa-
tion, supported tag libraries trends in their development, were announcing that
they would; which would make this tag library available to both systems.

127

5 Implementation

5.1 Introduction

As it is mentioned earlier, the goal of this thesis was to introduce another
element of personalization into the ETH World portal framework: recommenda-
tion, since the original portal implementation includes other two elements, cus-
tomization, and one-to-one relationship to the user. The motivation lays in the
fact that in university environment this facility could find many different applica-
tions; for instance it could help students in the process of course selection when
they are starting new semester or find colleagues with similar interests. It can
also find many applications among other members of university community, to
researchers, for example, when discovering important papers, books or book-
marks and many more. This concept has shown its good qualities in business en-
vironment, especially e-commerce (take Amazon.com as example), so why not try
it in the academic environment.

In the section 1.4, the main objective of the ETH World project to transfer the
university spirit into the virtual world, is explained. Along with the basic func-
tions of the institutional information portal, the ETH World portal need to pro-
vide something more; it has to become personal gateway and guide through uni-
versity life. This is were the recommendations find their place, as a specific type
of user help, in the navigation through virtual space and un the selection of the
right in the piles of existing contents. Each semester, tons of students have to
choose courses coherent to their interests and their future needs. It is a hard task
and requires lots of investigating, conversation, and thinking. Contradictory
opinions come from different sides and there is no guarantee that if more people
are inquired the quality of deduction will grow. On the university, already exist
tons of information about each member of academic community, both historical
and contemporary. This information can be used for inferring new facts on them.
For example, there exists information about exams passed and courses attended
for every student. If we assume that chosen courses show interests of that par-
ticular student, it is possible to partition the student population into clusters with
similar interests. These are the students whose sets of courses chosen overlap.

Similar approach is used in the Siteseer system [RUCK97]; where as interest
indicators the web browser bookmarks are used. The assumption, on which this

128 Chapter 5 Implementation

system relies, is that users bookmark interesting web sites and organize related
bookmarks into folders. Figure 5.1 illustrates the approach, used in this system,
on the example where John should get recommendations for vacation location.
Based on the degree of overlap (such as common URIs) in the thematically-
similar folders, the most qualified recommenders (i.e. nearest neighbors, there
are four of them) are detected. Recommendations are those URIs, which have
been bookmarked by the user’s virtual neighbors, drown from folders with the
highest overlap as well as those held within multiple folders in the neighborhood
(see [RUCK97] for details).

Figure 5.1 Finding virtual neighbors and recommendation in the Siteseer system

The ETH World portal can, for example, in the course selection process, show
the list of courses, selected by his nearest neighbors (in the interest space). This
could be mapped to a real world situation where the student gets advices from
people that share same interests. The advantage is that the student does not have
to spend precious time trying to find people that share the same professional in-
terests, and investigate them, but it is enough to ask the portal.

I Concepts

Modeling users (actually, generating profiles) with the set of his/her interests
is usual in the recommender systems (refer to third chapter). Depending on the
required profile persistency and the level of user engagement, different user ac-
tions can be utilized as interest indicators. Table 3.2 shows some examples of the
academic systems, which as interest indicators use followed links, specified key-
words, and user ratings of already viewed contents…

In the CF systems the users are, often, represented as points in n-dimensional
content space, where the interests (actually, interest indicators) represent the val-

5.1 Introduction 129

ues of their coordinates (figure 5.2a). First are in the user space, identified points
closest to the active one, and then recommendations are generated, as those di-
mensions of the closest points which active one does not hold (refer to previous
example, figure 5.1). There is also an approach in which dimensions are users,
and contents points in that n-dimensional space and the value of its coordinates
are again interest indicators (figure 5.2b; description in more detail in section
3.4.4). In IR systems (figure 5.2c), also, the closest points are found, but now
among contents in the interest indicator space; and they are recommendations.

a) b) c)

S2

S3

S1

K1

K2
K3

K7

K6
K5

Kn

Km

S2

S3

S1

K1

K2
K3

K7

K6
K5

Kn

Km

K2

K3

K1

S2

S1
S3

S7

S6
S5

Sn

Sm

K2

K3

K1

S2

S1
S3

S7

S6
S5

Sn

Sm

PI3

PI1

K1

K2
S3

K7

K6
K5

Kn

Km

S4

S5

PI3

PI1

K1

K2
S3

K7

K6
K5

Kn

Km

S4

S5

Figure 5.2 Generating recommendations by identifying: closest users(a), similarly rated

contents (b), similarities between users and contents(c)

Figure 5.2 brings us to the conclusion that, actually, the principle of grouping
profiles is the same, just the profiles are different (dimensions inverted, or pa-
rameterized). When the goal is the functional extension of the framework, the
generic solutions are sought for. In this case, it is a module that will allow selec-
tion in both, profile definition, and the way similarity between them is resolved.
This actually means that the application programmer has the freedom to choose
what she/he will use as interest indicators, and different ways to collect them are
provided.

One should, also, have in mind that the user profiles (user representations in
the interest space and inverse; figure 5.2) change over time; and the profiles of
their nearest neighbors change, too. Profiles migrate from one group to another;
hence, groups change their organization. People, who once had similar interests
to mine, and were my friends, may be now thousand miles away. Thus, the
groups should be defined as dynamic, and for their creation use some of the ex-
isting algorithms.

II Technology

There is a number of algorithms that allow dynamic group creation i.e. profile
clustering (refer to section 3.3.2), which is the name for these algorithms in the
data mining world so the aim of this thesis was not to so make a new one. For
proof of concept existing ones can be used as well. Therefore, the developed rec-
ommendation module is implemented in a way that it can use one of the existing

130 Chapter 5 Implementation

data mining products; in this case it is Microsoft Analysis Services, an MS SQL
Server extension.

The recommendation module is implemented as JSP tag library(refer to sec-
tion 4.4.2) named advisor, that serves as a bridge between Microsoft Analysis
Services that does the clustering and the portal, which uses those clusters. When
the portal receives the information on user or content clusters, it uses this infor-
mation to recommend contents that it considers will be interesting to that par-
ticular user. One of the main goals was to be independent of the ETH World por-
tal framework as much as possible and hence portable to all other Java -XML
frameworks, which provide user identification (for example, portals). Alas, at the
moment portability cannot be so easily granted. A system that wants integrate
this recommendation module has to fulfill long list of requirements, in addition
to the already mentioned user identification. A data mining provider that im-
plements OLE DB for Data Mining is a must.

The ETH World portal framework, as already explained (refer to chapter 4.3)
enables simple integration and execution of Java Server Pages. These applica-
tions, by being able to separate presentation and programming logic, support one
of the basic portal functions to represent same data differently to different users.
Additionally, since each of the tags encapsulates some functionality their use is
intuitive and therefore available to non-programmers, too. Tags enable produc-
tion of new or manipulation of already existing data. Using them, for example,
data about certain user can be accessed; various lists can be outputted in XML
format, distinct elements in a list can be found and so on. The only requirement
that the portal Java Server Page has to fulfill is to output data in XML, so later it
can be rendered by using XSLT.

III Applications

In order to prove that this really works, different small portal applications were
developed. The first one generates interactive timetable, automatically when the
user through the portal enters ETH World. It provides the user a view to all the
information it can find in the ETH, and which is connected to his or her univer-
sity activities. This data does not have to be provided by the user explicitly but
can also be inferred from available information. For example, for first semester
Computer Science students during semester (weeks), information about sched-
ules of their compulsory lectures and exercises will be presented. In the timetable
there exist links to the sites that provide lots of information on courses, available
in digital format. Additionally, they are provided the ability to customize it by
adding or removing different events, which can be university connected or their
own.

In some school systems students have the freedom to choose courses to attend
and probably take the examination from. Therefore, they should be presented the

5.2 System overview 131

list of subjects they are allowed to choose. There are many different ways to do
that, but in this thesis just two of them are handled. Courses can be chosen from
the recommendation list, which is generated by the application using the advisor
module, or from the list of courses available for the direction of studies and se-
mester the student is currently in. This application is available to all (other) users
of the portal, students in higher semesters or different direction of studies, re-
searchers, teachers, and … Depending on the group users belong to, it should
provide different kind of information and degree of freedom.

Application Interactive timetable is available to all (other) users of the portal,
students in higher semesters or different direction of studies, researchers, teach-
ers, and … Depending on the group users belong to, it should provide different
kind of information and degree of freedom. It was the initial idea when develop-
ing this application that it (together with the portal) can also be used as commu-
nication channel between all its users. For example, let an assistant add some in-
formation connected to the assisted course, to his or her personal timetable as
public (visible to all). This information could be a document or event outside the
regular lecture hours. Through the portal it will become immediately available to
all students assigned to this course and not just to those who are conscious
enough to check course homepage or regularly visit lectures. It could also serve
as a reminder, which students do not have to set on their own. The main goal of
this application deployment was to examine the other basic portal requirement:
to have everything needed for work on one place, a single point of entrance into
university community.

5.2 System overview

As it is already indicated, many different components mutually interact in
order to make the system work as expected. Figure shows all the components of
the system and the execution flow. When the client accesses the Java Server Page
that calls tags from the advisor module, the following actions are taken:

§ While interpreting the JSP application, Tomcat comes to an advisor tag,
and starts its execution.
§ The advisor tag calls JACOB (Java COM Bridge, refer to section 5.3)
which connects to ADODB,
§ Which then accesses Microsoft Analysis Manager through OLE DB for
Data Mining, gets the required piece of information and sends it the same
way back.

The figure 5.3 indicates that the advisor tag library is not completely inde-
pendent from the ETH World portal, as it is previously mentioned. Tags fre-
quently interact with portal framework and use the database pooling component,
which provides access to Microsoft SQL Server database, where all the data on

132 Chapter 5 Implementation

users is stored and shared by various applications. User identification is inherited
from the portal, too.

In the following two chapters, a closer look is taken into JACOB and OLE DB
for Data Mining. It is essential to understand the way these components function
in order to understand the way recommendation is achieved.

HTTP Client

Tomcat

JSP Application JACOB

OLE DB for
Data Mining

DB Server

Microsoft
Analysis
Services

Microsoft
SQL ServerJDBC

Portal

Advisor Taglib

Figure 5.3 Execution of xJSP application in the portal framework

5.2.1 JACOB

JACOB (JAVA-COM Bridge) [JACOB] is a Java library that allows applica-
tions to call COM automation components from the Java environment. It uses the
Java Native Interface (JNI) to make native calls into the COM and Win32 librar-
ies. COM is the object model for creating software applications from independent
components. COM objects have binary interfaces that are language-independent
and therefore can be used for developing various application parts in any COM-
compliant language.

Example 5.1 shows one application of JACOB, where Microsoft Excel is used
as an Automation server, i.e. its execution is controlled by the Java application Dis-
patchTest. For this reason this application is an Automaton controller (client). The
result of the execution of this simple application, which puts values of the func-
tion xi=xi-10.9 , i=1,5, x0=256, in two Excel sheet rows is shown by the figure 5.4.

Application DispatchTest is initialised as Single Threaded Apartment (STA).
Apartment thread is equivalent to the user-interface thread in WIN API. This
means that all COM objects created in this thread are single-threaded i.e.:

§ Either all calls into that component are made from the same thread that
created the component (like it is the case in the example 5.1) or

5.2 System overview 133

§ Any call that is made from another thread gets serialized by COM,
where serialization of calls is done by using a Windows message loop and
posting messages to a hidden window.

Example 5.1 Microsoft Excel used as Automation server
import com.jacob.com.*;
import com.jacob.activeX.*;
public class DispatchTest{

public static void main(String[] args){
ComThread.InitSTA();
//creates new ActiveX object
ActiveXComponent xl = new ActiveXComponent("Excel.Application");
Object xlo = xl.getObject();
//defines that Excel window is visible
xl.setProperty("Visible", new Variant(true));
xl.setProperty("DisplayAlerts", new Variant(0));
//creates new workbook and adds it to Excel workbooks
//sets the work sheet and defines the fields to be used
Object workbooks = xl.getProperty("Workbooks").toDispatch();
Object workbook = Dispatch.get(workbooks,"Add").toDispatch();
Object sheet = Dispatch.get(workbook,"ActiveSheet").toDispatch();
String[] fields = new String[]{"A1","B1","C1","A2","B2","C2"};
Vector xlfields = new Vector();
for (int i=0;i<6;i++) {

Object fl = Dispatch.invoke(sheet, "Range", Dispatch.Get,
new Object[]{fields[i]}, new int[6]).toDispatch();
xlfields.add(fl);

}
//sets the value of field A1 to be 256
Dispatch.put(xlfields.elementAt(0), "Value", "256");
// sets the values of all other fields using defined function
for (int i=1;i<6;i++)

Dispatch.put(xlfields.elementAt(i), "Formula",
 "=POWER("+fields[i-1]+";0.9)");

//and then reads hem from Java application and uses (prints)
for (int i=0;i<6;i++)

System.out.println(fields[i]+" from excel:" +
Dispatch.get(xlfields.elementAt(i), "Value"));

//creates new object (chart graph) from table def by sheet object
Object charts = xl.getProperty("Charts").toDispatch();
Object chart = Dispatch.get(charts,"Add").toDispatch();
Dispatch.put(chart, "ChartType", "-4100");
Object a1c2 = Dispatch.invoke(sheet, "Range", Dispatch.Get,
new Object[]{"A1:C2"}, new int[1]).toDispatch();
Dispatch.invoke(chart, "SetSourceData", Dispatch.Method,
new Object[]{a1c2, "1"}, new int[1]);
//calls print option in Excela and prints workbook
Dispatch.call(workbook, "PrintOut");
//closes Excel
Dispatch.call(workbook, "Close", new Variant(true));
xl.invoke("Quit", new Variant[]{});
//releases the thread
ComThread.Release();
}

134 Chapter 5 Implementation

a Excel output

b Console output:
A1 from excel:256
B1 from excel:147.03338943962
C1 from excel:89.2635946464259
A2 from excel:56.9648469281598
B2 from excel:38.0229878910691
C2 from excel:26.4266198343503

Figure 5.4 Using Microsoft Excel as automation server

JACOB implements the package com.jacob.com. All JACOB objects which
wrap COM objects extend com.jacob.com.JacobObject. This class has some
special code to register itself with a com.jacob.com.ROT object (Running Object
Table -ROT). This table maps a Thread to the set of JacobObjects created in that
thread. When ComThread.Release() is called the ROT checks whether that
thread has created any objects, and these objects are released by calling their na-
tive release methods. This means that lifetime management method ties the
lifecycle to the thread's lifecycle and not to the garbage collector. It is important to
call ComThread.Release() on any thread before it is allowed to exit, otherwise
random crashes can appear during execution.

5.2 System overview 135

It is noticeable that m ost of the communication between the COM component
and the Java application is done through the methods of the Dispatch class
therefore it will be explained in some more detail in the next section.

5.2.1.1 COM.JACOB.COM.DISPATCH

In JACOB, the com.jacob.com.Dispatch class is the basic building block.
This class is used to create an instance of an Automation server. The
com.jacob.activeX.ActiveXComponent class (example 5.1) simply extends the
Dispatch class to provide compatibility with the way Automation servers are
created in the MS JVM. The Dispatch class enables Java programs to invoke
methods and access the properties of any Microsoft ActiveX Automation object.
(ActiveX Automation objects are ActiveX components that support the IDis-
patch interface.). All methods in the Dispatch class are static.

§ Constructor: The com.jacob.com.Dispatch constructor takes a String as
an argument. If the string contains a colon (':'), it is interpreted as a Moniker
(surrogate COM object that holds the name, URL of the real object, which
could be an embedded component, but usually is an Internet file e.g.
“http://host/filename”) otherwise, it is assumed to be a ProgID in the
Registry. (refer to section 5.3.2).

Table 5.1 Parameters of methods invokev and invokeSubv
Object pDispatch Either a Java object that wraps an ActiveX Automation object or a Variant

object that can be coerced to such an object (e.g. chart).

String dispName The name of the method or property that is invoked (e.g. Range).

int dispID Indicates the method or property that is invoked. This parameter is ignored
if dispName is null.

int lcid Indicates the locale identifier. Wrapper methods automatically pass Dis-
patch.LOCALE_SYSTEM_DEFAULT for this value.

int wFlags Indicates the type of access: must be Dispatch.Method,
Dispatch.Get, Dispatch.Put or Dispatch.PutRef. Most of the
wrapper methods provide a fixed access that is indicated by the method
name: Get methods default to DISPATCH_PROPERTYGET; Put methods
DISPATCH_PROPERTYPUT; Call methods to DISPATCH_METHOD.

Variant vArg The parameters of the method or property accessor. No default value

int uArgErr[] If the Automation object rejects a parameter, this array receives the index of
the offending parameter; it must be null or a one -element integer array

Although the Dispatch class includes a large number of methods, three ba-
sic methods define its capabilities.

§ GetIDsOfNames: Maps methods or property names to dispids.
§ Invokev: Invokes methods or accesses properties.
§ invokeSubv: Invokes subroutines.

136 Chapter 5 Implementation

All the other methods in the class have the same function as one of the three
basic methods; however, each of the other methods supplies (wraps) commonly
used default parameters for ease of use. The table 5.1 describes the parameters
required by the invokev and invokeSubv methods.

5.2.1.2 COM.JACOB.COM.VARIANT

The Variant class of the com.jacob.com package is used to bridge Java with
Microsoft ActiveX components that manipulate VARIANT data types. VARIANT
data type is an all-purpose data type that Dispatch.invokev uses to transmit
parameters and return values. Most Variant methods fall into one of three cate-
gories:

§ toXXX methods, which attempt to convert the Variant object to type
XXX and return the converted value.
§ getXXX methods, which succeed only if the Variant object is already the
correct type. If not, a ClassCastException is thrown.
§ putXXX methods, which change the type of a Variant object and initial-
ize it to a new value.
Example 5.2:One application of the jacob.com.Variant class
import com.jacob.com.*;
class variant_test{

public static void main(String[] args){
System.runFinalizersOnExit(true);
Variant v = new Variant();
v.putInt(10);
System.out.print("got value as int="+v.toInt());
System.out.println(" got value as real="+v.toDouble());
v.putString("1234.567");
System.out.print("got value as string="+v.toString());
System.out.println(" got value as int="+v.toInt());
v.putBoolean(true);
System.out.print("got value as boolean="+v.toBoolean());
System.out.println(" got value as string="+v.toString());
v.putBoolean(false);
System.out.print("got value as boolean="+v.toBoolean());
System.out.println(" got value as int="+v.toInt());
v.putCurrency(123456789123456789L);
System.out.println("got value as currency="+v.toCurrency());

}
}

Console output:
got value as int=10 got value as real=10.0
got value as string=1234.567 got value as int=1235
got value as boolean=true got value as string=-1
got value as boolean=false got value as int=0
got value as currency=123456789123456789

Example 5.2 illustrates the application that uses one instance of the class
Variant to store in and read from values of different types. It shows the flexibil-
ity of this class, as well as the employment of previously indicated methods.

5.2 System overview 137

5.2.2 OLE DB for Data Mining

OLE DB for Data Mining [OLEDB] is an OLE DB extension that supports
data mining operations over OLE DB data providers. If we refer to software
packages that provide data mining algorithms as data mining providers, and those
applications that use data mining features as data mining consumers, then OLE DB
for Data Mining specifies the API between these two.

5.2.2.1 DATA MINING MODEL

OLE DB for Data Mining introduces a new virtual object, named the data
mining model (DMM) and several new commands for manipulating it. A data
mining model has behavior very similar to an ordinary database table. It can be
created using a CREATE statement, which is similar to the SQL CREATE TABLE
statement. Models are populated using an INSERT INTO statement and a SELECT
statement is used for making predictions and exploring the data mining model.
OLE DB for DM treats a data mining model as a special type of table. After the
data is inserted into the table, it is processed by a data mining algorithm and the
resulting abstraction is saved. This means that a data mining algorithm finds pat-
terns in training data and these patterns are saved, rather than the training data
itself. An already created mining model can be browsed, refined, or used to de-
rive predictions. The predictions are usually made on unprocessed data (data
that is not used for training). That data is then processed through the model
(saved abstractions). This processing is done by selecting tuples from a table,
which is the result of PREDICTION JOIN between the data itself and the model.

The logical representation of data that will be mined is as a collection of tables
in a relational database. If we take as an example a database about students, it
might contain the records on students, demographic data about students, exami-
nation periods, and courses. A join of the last two may have many records for
one student (one per exam seat during examination period). The collection of
data related to a single entity is considered as a case. The set of all relevant cases
is called a case set.

OLE DB for Data Mining uses nested tables (the way they are defined by
Data Shaping Service [AHL99]) to represent these relationships. This way the
columns of a model describe all of the information about a specific case. A model
for the previously mentioned student example could contain the data indicated
in the table 5.2.

From the table 5.2 it is obvious that a student case is not so easy to describe by
using simple relational tables. The meaning and the structure of the nested tables
differ from case to case. Therefore the ability of a case to contain multiple tables
of data is the key requirement of a data mining algorithm. The main row of the
case is the case row. Columns in the case row describe the entity of the case. For
example, the parameter Group in the previous table contains the study group of a

138 Chapter 5 Implementation

student whose Student ID is 1. Rows inside nested tables are nested rows. Columns
in the nested rows describe the entity of the nested row and the way it is related
to the case row. For example the mark column represents the mark that student 1
got for the exam in the examination period.

Table 5.2 Case example from the StudyLengthGuess model:

student
ID Group

se-
meste
r

age mns
mns
prob.

Exam
mark
(5-10)

exam
period course course

prob.
ty
pe

1 design 5 22 9 88% Arts 10 SE00 web design 50% C

 art history I 9 SE00 ind. design 3 80% K

 ind. design I 8 WE01

 CAD 7 WE01

A convenient feature of nested tables, which are defined this way, is that the
same physical data can be used to generate different case sets for different analy-
sis tasks. If someone would, for example, choose to mine a model over specific
courses, each course then becomes a single case and students become attributes
of the case.

The example shows that each column in a model can represent one of the fol-
lowing content types:

§ KEY columns are the ones that identify a row (student ID).
§ ATTRIBUTE is a direct attribute of the case. It represents some value for the
case (study group, semester, age or mark for the particular exam).
§ RELATION represents information used for the classification of attributes,
other relations and key columns. The value of the relation must be consistent
for all instances of the column it describes. For example, column type classi-
fies courses into: kernel(K), credit(C) and so on.
§ QUALIFIER is a special value associated with an attribute that has a prede-
fined meaning for the provider. A qualifier would for example be probabil-
ity that an attribute is correct. The qualifiers are optional and apply only if
the data has uncertainties attached to it or if the output of the previous pre-
dictions is being chained as input to a next training step of a data mining
model. Some of the examples for the qualifiers are: PROBABILITY,
VARIANCE, SUPPORT … Case in the table 5.2 contains attribute mns probabil-
ity, which is a qualifier for attribute mns; where mns (maximal number of se-
mesters) represents predicted study duration (in semesters) for the specific
student.
§ TABLE is a data type of a column that contains nested table. For any
given case row, the value of a TABLE type column contains the entire con-
tents of the associated nested table. In the CREATE MINING MODEL command
syntax, nested tables are described by a set of columns. All these columns

5.2 System overview 139

are contained within the definition of a named TABLE type column (see
query 5.1).
§ DISCRETE: The attribute values are discrete, and usually describe catego-
ries (study group, for example), therefore often called states. Even if the val-
ues are numeric, no ordering is implied.
§ ORDERED: Columns define ordered set of states. Even though the ordering
exists terms like distance or absolute value are not defined. For example,
marks (5-10) that are used for ranking knowledge or abilities represent or-
dered set. Thus, mark 10 does not show that the person’s knowledge is 2
times better then one’s that has mark 5. Attributes of this type are also dis-
crete values.
§ CONTINUOUS: attributes with the values that form a continuous curve. Val-
ues are naturally ordered and have implicit distance and magnitude seman-
tics. Domain for an attribute, which has this type, may also have a distribu-
tion associated with it. It gives a hint to the data mining provider about the
expected distribution of the column values that will be inserted into model
when it is trained. Some examples of distributions are: NORMAL,
LOG_NORMAL, UNIFORM, BINOMIAL, POISSON, and so on.
§ DISCRETIZED data of this type are inserted into model as CONTINUOUS, but
the provider transforms and models them into specific number of ORDERED
states.

When some of the possible column types (previously indicated or described
in [OLEDB]) are used for creating a model, they give the provider some sense
about the training data that it will be given with the INSERT command. The pro-
vider can be given some more hints that improve the quality of the built model,
but they are usually provider-specific. For example:

§ MODEL_EXISTENCE_ONLY indicates that the actual values for an attribute
are not nearly as important as the simple existence of the attribute.
§ NOT NULL indicates that the attribute can never contain a null value, and
encountering one while training should generate an error.

Both, regular attributes and TABLE type columns can be input, output, or in-
put/output column values. Attribute or table type columns can be input columns,
output columns, or both. A data mining model should be able to predict or explain
output column values based on values of the input columns. A prediction can be
expressed as a histogram that provides multiple possible prediction values to-
gether with probability and other statistics.

5.2.2.2 CREATE MINING MODEL

As indicated in the previous section a data mining model can be defined by
using the CREATE MINING MODEL statement. With this statement, only structure

140 Chapter 5 Implementation

and properties of a mining model are defined, i.e. column types (refer to section
5.2.2.1) and data mining algorithm are specified. It has the following syntax:
CREATE MINING MODEL <mining model name>
(<Column definitions>) USING <Service>[(<service arguments>)]

For the student example, the CREATE MINING MODEL statement would have
the following structure:

Query 5.3:Create Mining Model
CREATE MINING MODEL [StudyLengthGuess](

[Student ID] LONG KEY,
[group] TEXT DISCRETE,
[semester] DOUBLE DISCRETIZED(),
[age] DOUBLE,
[mns] DOUBLE DISCRETIZED() PREDICT,
[mns probability] DOUBLE PROBABILITY OF [mns],
[exams passed] TABLE(

[exam] TEXT KEY,
[mark] DOUBLE DISCRETIZED(),
[examination period] TEXT

)
[Courses chosen] TABLE (

[course] TEXT KEY,
[course probability] DOUBLE PROBABILITY OF [course],
[type] DISCRETE RELATED TO [course]

)
) USING [Microsoft_Decision_Trees]

After the mining model has been created it has to be populated with the train-
ing data using the INSERT INTO statement. During this process, the training data
is run through the data mining algorithm and the predictive model is defined (it is
also referred to as DMM content). The DMM content is the set of rules, formulas,
classifications, distributions, nodes, or any other information that was derived
was derived from a specific set of data using a data mining technique. Beside that
for each of the attributes, the set of all possible states is stored (if the columns are
of the discrete type). For continuous attributes the minimum, average and maxi-
mum values are stored. Since it is possible that values of some attributes from the
input set are not known, input set is attached additional NULL (missing) value.
Depending on technique, used while creating, the type of content is differed from
one model to another. The training stage includes intensive data processing, and
it can last very long.

5.2.2.3 SELECT

The prediction information can be very rich, so it is often necessary to extract
only a portion of the predictions. Different mining models support different re-
quests, e.g. ‘best estimate’, ‘ top 5 estimates’, … Therefore, the output column de-
fines what information can be extracted out of it. OLE DB for Data Mining de-
fines a set of standard functions that allow this extrac tion of information from
output columns and are used in SELECT statement. Some of these functions are:

5.2 System overview 141

§ Predict: Directly selecting a predictable column from a DMM is a shortcut
for using the default behavior of the Predict function on the column. It will
return the "best" predicted value for the column. Syntax for this function is
Predict(<column reference>, option1, option2,...)(see [OLEDB]).
§ Cluster is function, which can be used in the clustering models. A result of
this function is returns a scalar value of cluster identifier that the input case
belongs to with the highest probability.
§ ClusterProbability returns the probability that the input case belongs to the
cluster that has the highest probability.

The OLE DB for Data Mining SELECT statement has the following structure
(see also Query 5.4):
SELECT [FLATTENED] <SELECT-expressions>
FROM <mining model name> PREDICTION JOIN <source data query>

ON <join condition> [WHERE <WHERE-expression>]

The <SELECT-expressions> clause is set of comma-separated expressions,
where each of them can be just a simple reference to a column from the data min-
ing model or source data query or a general expression containing prediction
functions.

I PREDICTION JOIN

Operation PREDICTION JOIN is used when retrieving predictions from min-
ing model to match up actual cases from <source data query> with all possi-
ble cases from a <mining model name>. It takes one case from the input set and
finds, in the mining model, matching cases using the conditions in the ON clause.
(<join condition> expression). Algorithm (refer to section 3.3.1.5), then
prunes this set of matching cases into one aggregate case. This case contains the
best predictions for all predictable columns in the model (in the query 5.7 these
are the values of the functions Cluster() and ClusterProbability()).

Though similarity in syntax to standard relational JOIN exists, this operation
does not follow its semantics:

§ Operation PREDICTION JOIN matches exact continuous value of the
source case attributes (given by <source data query>) with some learned
distribution in the mining model, and not to every possible value in predict-
able column. If we assume that the model StudyLengthGuess column mns has
the following set of possible cases {min, max, average, missing} = {8,
15, 10, NULL} then query:

SELECT * FROM StudyLengthGuess WHERE age=22 and mns=9

does not return records, since this query but on PREDICTION JOIN, between
the table containing new cases and mining model return learn distribution for
the current attribute. For example, group for students 22 years old; for exam-
ple (architecture .321; computer science .276; design .225; law .113; missing .065).

142 Chapter 5 Implementation

§ The cases in the model represent all possible states for a column being
predicted, together with the probability that this value is correct. A user se-
lecting a prediction for a column often expects to get the single best predi-
cated state. Actually, query:
SELECT * FROM StudyLengthGuess WHERE age=22 and mns=10

As a result returns the table:
Group … age mns mns prob

Architecture … 22 10 0.321

Computer science … 22 10 0.276

Design … 22 10 0.225

Law … 22 10 …

Missing … 22 10 …

while SELECT * FROM PREDICTION JOIN returns only the most probable
value (here it is architecture)
§ The PREDICTION JOIN may need to make some aggregations and as-
sumptions when confronted with missing values in the source case. If, for
example, we have SINGLETON query:

SELECT * FROM StudyLengthGuess as SLG
PREDICTION JOIN (SELECT 6 as semester,
((SELECT ‘Arts’ as eExam, 10 as mark,
‘SS00’ as [examination period]) UNION …) as Exams) as case
ON SLG.semester=case.semester AND ...

generated as a PREDICTION JOIN of a model and a source case, which is not
completely defined (the values for attributes age, group... are missing). As a
result, just one, the most probable value for the mns attribute is returned,
while the operation JOIN would return all tuples that satisfy given terms.

The <source data query> clause identifies the set of cases that will have
their attributes predicted by combining them with the learned knowledge in the
mining model. Depending on the provider, some or all of the following query
types are supported: SINGLETON CONSTANT, SINGLETON SELECT,
OPENROWSET, SELECT and SHAPE [OLEDB].

II ON and condition in the JOIN operation

Key columns on the case row are only for the bookkeeping and consistency
reasons. Depending on the mining algorithm, key values (KEY) from the set of
training data may not be used by the mining model. Usually, a mining model
does not retain the set of distinct values for these columns. However, because
each row from the models set of all possible cases is unique, it can be matched to
rows from the source query of actual cases through the <join condition>
clause of the ON keyword. The join condition matches the columns from mining
model to columns of the source query. The join condition has one “=” expression
for each set of columns to be matched and the expressions are joined with the AND

5.2 System overview 143

keyword. Column references can be simple column names, they can be prefixed
with a model or alias name to scope namespaces and resolve name conflicts, and
they can have many scope levels to identify columns, which are in turn members
of table type columns.

The <WHERE-expression> supports a simplified form of SQL WHERE clause
semantics that can limit the cases returned from a prediction query.

5.2.2.4 SHAPE

Although, for population of many mining models, a result set with nested ta-
bles is needed, a single query to most relational providers usually cannot return
it. Therefore, multiple queries have to be executed in the data source to retrieve
all the data that represents the case. The queries have to be shaped into a nested
table so they can be fed into the mining model. OLE DB for Data Mining pro-
vides several alternatives for performing this operation: integrated support for
SHAPE syntax (used here), use of the MDAC Data Shaping Service (an OLE Pro-
vider that can be layered on the top of other providers and invoked in OLEDB for
DM via OPENROWSET) or native support for nested tables (which exist in a small
number of databases). In query 5.6 the basic syntax of the SHAPE statement can
be recognized:

SHAPE {<master query>}
APPEND({<child table query>}
RELATE <master column> TO <child column>)
AS <column table name>

[
APPEND ({<child table query>}
RELATE <master column> TO <child column>)
AS <column table name>

]

It allows the addition of table columns to a master query by specifying the
child table rows and the way to match between the row in the <master query>
and its child rows <child table query>.

5.2.2.5 OPENROWSET

The OPENROWSET function allows the <source data query> to read the data
from an external data source since most of data mining providers are not embed-
ded in the RDBMS, which contains source data. The basic syntax of this function
is:

OPENROWSET(‘provider_name’,‘provider_string’,‘query_syntax’),

where provider_name name is an OLE DB provider name (‘SQLOLEDB.1’ when
using SQL Server), provider_string is the OLE DB connection string for that
provider.

In case of just reading data to shape them into nested table (but not inserting
them into mining model) the connection string has the following format:

144 Chapter 5 Implementation

‘Persist Security Info = True; User ID = userid; Password = pass-
word; Initial Catalog = Sweets; Data Source= dbServer’,

while in case of populating data mining model (when using INSERT statement):
'Provider=SQLOLEDB.1; Integrated Security=SSPI; Persist Security
Info=False; InitialCatalog = Sweets; Data Source= dbServer'

Parameter query_syntax is a query that returns a row set. The data mining
provider will establish the connection to the data source using the pro-
vider_name and provider_string and will execute the query specified in
query_syntax, to retrieve the source data rowset.

5.2.2.6 DELETE, DROP

There are two possible ways to delete existing mining model. First one is to
delete the data mining model object i.e. remove the object from the system, with
both its structure and its content. For this operation statement DROP MINING
MODEL <model name> is used. The other operation clears just the content of the
data mining model object but leaves its structure intact. For this operation
DELETE statement is used. The DELETE statement can be used in two variations:

§ DELETE FROM <model name> deletes the content and the column values
but the structure stays. Then the data mining model can be repopulated with
a new set of training data.
§ DELETE FROM <model name>.CONTENT deletes the content of the mining
model, but leaves the structure and the learned values. This means that the
learned patterns are dropped but that the predicted values stay.

5.3 Advisor tag library

This is a library of tags that implement clustering functionality. The recom-
mendation module is implemented as a sub-package of the portal.taglib
package. The basic idea for using clustering has already been suggested in 5.1. In
this part, the implementation will be explained in few more details.

The recommendation module forms clusters of the users according to their
personalities. The Personality of a user is the whole of the selections he made from
a global information space and the weight and ordering he is attributing to it.
During his work and interaction with other people, personality defines what the
single user knows for him, what he gives to others and how he integrates infor-
mation from other people. A person, usually, participates in many different
communities and in each of them bears a specific role. His Role in a single com-
munity is the part of his personality i.e. subset of all the choices that user made.
The role is used for getting recommendations from a specific community. This
actually means that the user neighborhood discovery is performed in a specific
context, i.e. the set of applications, used by the particular community. Groups,

5.3 Advisor tag library 145

usually, have sense only in the particular application context, in which they are
generated, and can very rarely be used in some other.

The consequence is that the user profile structure, in this context (i.e. in the
domain of the specific role) is flat. Hence, in the clustering process all dimensions
have the same influence. Knowing these limitations the utilization of advisor tag
library becomes very simple. Extensions that would include more attributes or
different mining models are straightforward and easy to implement, but not so
easy to use since it requires much broader programming knowledge and exten-
sive explanation (refer to section 3.5).

Figure 5.5 shows the extended portal framework (refer to section 4.1). Tag li-
brary advisor is a part of the package portal.taglib, and includes two smaller
packages advisor.clustering and advisor.ado.

util

session

demo application

taglib

security

personalization

advisor

clustering

organizer

ado

DBConnPortalImpl

framework

svg

Figure 5.5 Extending portal framework with advisor module

The advisor.clustering package contains tags, which allow creation, ma-
nipulation, and destruction of a clustering model.

The advisor.ado package contains five classes, and one interface that pro-
vide direct access to data stored by a data mining provider. The classes from this
package, actually, wrap ActiveX Data Objects (ADO) [ADO] for JACOB, and
provide access to various kinds of data sources through an OLE DB provider. If
there is no OLE DB provider for a specific database, the connection can be made
through the OLE DB provider for ODBC Drivers. This provider effectively grants

146 Chapter 5 Implementation

access to any data source that has ODBC driver i.e. nearly all commonly used da-
tabases. All of the classes are derived from com.jacob.com.Dispatcher class
(refer to section 5.2.1), as it will be explained later in more detail (refer to section
5.3.2). Interface CommandTypeEnum stores values of ADO options used to optimize
how commands are executed (see appendix D).

The DBConnPortalImpl class is the only class dependant on the portal
framework. It takes a connection from the portal context (action 1.5.1.2 in figure
5.6), which then undertakes it from the database connection pool (action
1.5.1.2.1); it wraps creation of a statement (action 1.5.2), which, is done by the
connection taken from the pool (action 1.5.2.1.1) returns the statement to the tag
that has acquired it. After the query execution it returns the connection to the
pool (action 1.5.8.1.2- releaseConnection).

1.5.8.1.2.1.2.1: notify()

1.5.1.2.1.2.1.2.2: setAutoCommit(false)

1.5.1.2.1.1.3.1.2: wait(CONNECTION_WAIT_TIMEOUT)

1.5.8.1.2.1: releaseConnection(c)
1.5.1.2.1: getConnection():Connection

1.5.8.1.2: releaseConnection(dbConn):void

1.5.8.1.1: commit()
1.5.2.1.1: stmt:=createStatement():Statement

1.5.1.2: dbConn:=getConnection():Connection

1.5.1.1: getPortalContext():PortalContext1.5.8: commit()

1.5.7: close()

1.5.6: close():void

1.5.5.1.2.2.3: getString(i):String
1.5.5.1.2.2.2: getString(i):String
1.5.5.1.2.1: next():boolean
1.5.5.1.1: rsmd:=getMetaData():ResultSetMetaData

1.5.3: rs:=executeQuery(queryStr):ResultSet

1.5.2: createStatement():Statement
1.5.1: onstructor>(pageContext.getRequest())

1.1: getModelInfo()

1: doStartTag():int

1.5.4: wasNull():boolean

initial:GetColumnsTag

portalContext:PortalContext

dbPool:DBConnectionPool

dbConn:Connection

stmt:Statement
connection:Connection

Application

rs:ResultSet

dbConn:DBConnImpl
req:PortalRequest

1.5.1.2.1.2.1.1: isClosed():boolean

1.5.8.1.2.1.2.1: notify()

1.5.1.2.1.2.1.2.2: setAutoCommit(false)

1.5.1.2.1.1.3.1.2: wait(CONNECTION_WAIT_TIMEOUT)

1.5.8.1.2.1: releaseConnection(c)
1.5.1.2.1: getConnection():Connection

1.5.8.1.2: releaseConnection(dbConn):void

1.5.8.1.1: commit()
1.5.2.1.1: stmt:=createStatement():Statement

1.5.1.2: dbConn:=getConnection():Connection

1.5.1.1: getPortalContext():PortalContext1.5.8: commit()

1.5.7: close()

1.5.6: close():void

1.5.5.1.2.2.3: getString(i):String
1.5.5.1.2.2.2: getString(i):String
1.5.5.1.2.1: next():boolean
1.5.5.1.1: rsmd:=getMetaData():ResultSetMetaData

1.5.3: rs:=executeQuery(queryStr):ResultSet

1.5.2: createStatement():Statement
1.5.1: onstructor>(pageContext.getRequest())

1.1: getModelInfo()

1: doStartTag():int

1.5.4: wasNull():boolean

initial:GetColumnsTag

portalContext:PortalContext

dbPool:DBConnectionPool

dbConn:Connection

stmt:Statement
connection:Connection

Application

rs:ResultSet

dbConn:DBConnImpl
req:PortalRequest

1.5.1.2.1.2.1.1: isClosed():boolean

Figure 5.6 Collaboration diagram for DBConnPortalImpl

In the following few sections the main concepts of the advisor tag library will
be explained by taking closer look at some of the tags.

5.3.1 advisor.Clustering

The advisor.clustering package contains tags, which allow creation, ma-
nipulation, and destruction of a clustering model, as well as only its content. Tags
contained in the library are shown in figure 5.7. Using these tags it is possible to:

5.3 Advisor tag library 147

§ create new user clusters simply by changing the criteria according to
which they are clustered;
§ Retrain existing data for new clusters,
§ Find the cluster a specific user belongs to and all information about it,
§ Drop all the data about the specified mining model

BodyTagSupport
RetrainModelTag

 model:String
 clusterNo:int

BodyTagSupport
CreateClusterTag

+doStartTag:int
-escapeSql:String
+doAfterBody:int
+doEndTag:int
+release:void

 model:String
 caseTable:String
 inputTable:String
 caseIdColumn:String
 inputIdColumn:String
 rowsetData:String
 connectStr:String

BodyTagSupport
InputColumnTag

-inputIdColumn:String

+doEndTag:int
+release:void

 initParameter:String

TagSupport
BaseQueryTag

#caseTable:String
#inputTable:String
#caseIdColumn:String
#inputIdColumn:String
#rowsetData:String
#connectStr:String
#tableSource:String

+getRS:Recordset
+getDistinctValues:Vector
+getModelInfo:void

 model:String

BodyTagSupport
CaseColumnTag

-caseIdColumn:String

+doEndTag:int
+release:void

 initParameter:String

BodyTagSupport
InputTableTag

-inputTable:String

+doEndTag:int
+release:void

 initParameter:String

BodyTagSupport
CaseTableTag

-caseTable:String

+doEndTag:int
+release:void

 initParameter:String

QueryTag

+doStartTag:int

 caseID:String
 result:String

BodyTagSupport
DropModelTag

 model:int

GetColumnsTag

+getXMLOutput:void
+doStartTag:int

 attribute:String
 queryRS:String

BodyTagSupport
ConnectTag

-connectStr:String

+doEndTag:int
+release:void

 initParameter:String

BodyTagSupport
RowsetDataTag

-rowsetData:String

+doEndTag:int
+release:void

 initParameter:String

Figure 5.7 Class diagram for the advisor.clustering package

5.3.1.1 CREATECLUSTERSTAG

This tag allows the creation of the clustering mining model. Since the model is
created just once, and then different queries can be performed or retraining, this
tag can be used only once (form one model) on the administrator page. Its utiliza-
tion is not required. However, if the <createClusters/> tag is not used, a min-
ing model has to be created some other way e.g. by using a data mining model-
ing tool (like Microsoft Analysis Services Front-End). The model, created with
this tag and used for recommendation has to fit the following constraints:

§ Key attribute (caseColumn) of the model contains caseIDs, which repre-
sent unique identifiers for entities that are clustered. Basic description of the
entities (i.e. cases) can be found in caseTable.
§ The cases are clustered based on the information stored in inputTable. In
the relational database, inputTable represents the table containing multi-

148 Chapter 5 Implementation

valued attributes for the cases; actually, for each tuple in that table the com-
bination (caseColumn, inputColumn) represents key attribute.

Microsoft OLE DB for Data Mining query used for model creation has the
format as indicated in the query 5.4, where the values for the parameters (italic
text) have to be provided by the application programmer through suitable tag
utilization. For example, the sequence from an xJSP application, indicated by ex-
ample 5.5, is used for creation of the clustering model RecipeBook that clusters all
cakes based on their ingredients.

Query 5.4:Create Clustering Model
CREATE MINING MODEL [model]

([caseColumn] TEXT KEY,
[inputTable] TABLE
([inputColumn] TEXT KEY),
[caseColumn1] TEXT DISCRETE PREDICT_ONLY)
USING Microsoft_Clustering (CLUSTER_COUNT = noOfclusters);

It is necessary that the tables: cakes, with primary key cakeName (where all the
information on cakes is stored) and ingredients, with primary key [cakeName, in-
gredient] (where all the information about ingredients of indicated cakes is stored)
exist in the database Sweets on dbServer. The necessary information for model
creation is set by setter methods, which are tags themselves, nested in the create
tag. For that reason, the CreateClustersTag class has to manipulate its body;
thus, it extends BodyTagSupport (refer to section 4.4.2.2). All the parameters are
passed to the parent tag (create) through the JSP pageContext as attributes and
therefore available to it before the method doEndTag() starts its execution.

Figure 5.8 shows the sequence of actions executed during model creation
(execution of doEndTag() method). After opening the connection to the COM ob-
ject (notice that the parameter adCmdUnspecified is compulsory if the query re-
turns an empty RecordSet), a sequence of commands is executed first to create
the mining model and then to train it with existing data (actions 1.2.8 and 1.2.10
on the figure 5.8). The occupied COM object must be released after all the actions
are executed (action1.4).

After the creation, a description of the model is stored in the database system
table AdvisorModels and can be retrieved by executing the <getMod-
elInfo/>.tag.

5.3.1.2 QUERYTAG

This tag queries an already existing and trained mining model. The result of
the execution are all entries from the caseColumn, which are members of the clus-
ter the given caseID belongs to. The parameter caseID has to be one of the entries
in caseColumn, which exist both in caseTable and inputTable tables in the source da-
tabase. Otherwise, the returned result will be empty.

5.3 Advisor tag library 149

c
Connection

static
ComThread

initial
CreateClusterTag

try

catch(java.sql.SQLException sqle)

AdminPage

comm
Command

try

catch(java.sql.SQLException sqle)
1.4: Release()

1.2.12: Close()
1.2.11: CommitTrans()
1.2.10: comm.Execute()
1.2.9: setCommandText(queryStr)
1.2.8: comm.Execute()
1.2.7: setCommandText(queryStr):void
1.2.6: setCommandType(CommandTypeEnum.adCmdText):void
1.2.5: setActiveConnection(c)

1.2.4: <constructor>()
1.2.3: Open(connectStr, "", "", CommandTypeEnum.adCmdUnspecified
1.2.2: setConnectionString(connectStr)

1.2.1: <constructor>()

1.1: InitSTA()
1: doEndTag():int

Figure 5.8 CreateClustersTag:doEndTag()sequence diagram

Example 5.5:Creation of the Clustering Model using tags
<harry:create model="RecipeBook">

<harry:caseTable>cakes</harry:caseTable>
<harry:inputTable>ingredients</harry:inputTable>
<harry:caseColumn>cakeName</harry:caseColumn>
<harry:inputColumn>ingredient</harry:inputColumn>
<harry:connect>Location=dbServer;Provider=msolap;MiningLocation=c:/myr
ecipes;</harry:connect>
<harry:rowsetData>'SQLOLEDB.1','Persist Security Info = True; User
ID=userid; Password=password; Initial Catalog = Sweets; Data Source=
dbServer'</harry:rowsetData>
<harry:sourceTable>'SQLOLEDB.1','Provider=SQLOLEDB.1;Integrated Secu-
rity=SSPI; Persist Security Info=False; InitialCatalog = Sweets; Data
Source= dbServer'</harry:sourceTable>

</harry:create>

The recipe book example shows that this makes sense, because it is not possible
to say whether myCake falls in the banana cake or Schwarzwalder cake category if
none of its ingredients is already known. In the example 5.6 one application of
this tag is shown. Model RecipeBook is queried for names of all the cakes that have
the same flavor (i.e. ingredients as myCake).

The result is a vector of all names of the cakes that have the same flavor (i.e.
belong to the same cluster) as myCake, for example SameFlavorCakes={‘myCake’,
’Schwarzwalder cake’, ’Reform’,…}.

150 Chapter 5 Implementation

Example 5.6:An application of the query tag
….
<advisor:query model="RecipeBook" caseID="<%= myCake %>" re-
sult="SameFlavorCakes" />
….

The assumption during the execution of this tag is that it can get the metadata
about the mining model it should use. This is achieved through the pageContext
default variable. Thus, in the xJSP application, before this tag is referenced, there
has to exist a reference to <getModelInfo/>, which will put the required data in
pageContext. The QueryTag class inherits the BaseQueryTag class (figure
5.7), and its methods getModelInfo(), getRS() and getDistinctValues().
These methods create the query to the DMM stored by the data mining provider
(like Microsoft Analysis Services), using the indicated parameters; and return the
requested data to the application. This is achieved by employing the wrapper
classes for ADO objects (Recordset, Field…), and are also the parts of the ad-
visor package (refer to section 5.3.2).

Query 5.7: query Mining Model
SELECT FLATTENED
[T1].inputTable, Cluster() AS Node, ClusterProbability() AS CProb

FROM model PREDICTION JOIN
SHAPE {OPENROWSET (rowsetData,
’SELECT caseColumn AS caseColumn
FROM caseTable
ORDER BY caseColumn’)
}APPEND(
{OPENROWSET (rowsetData,
’SELECT caseColumn AS caseColumn_1,
inputColumn AS inputColumn
FROM inputTable
WHERE caseColumn =’caseID’
ORDER BY caseColumn)}
RELATE caseColumn TO caseColumn_1)
AS inputTable
AS [T1]

ON
model.caseColumn = [T1].caseColumn AND
model.inputTable.inputColumn = [T1].inputTable.inputColumn;

Method getRS(connectionStr, queryStr) returns the Recordset object that
contains the results of a query posed to the model . A prediction query is embed-
ded in QueryTag, and specified by queryStr (query 5.7). In this case, everything
has already been specified when the mining model was created, so only one pa-
rameter can be customized (caseID).

For the recipe book example, the SHAPE statement from the query 5.7 has the
following format:

5.3 Advisor tag library 151

SHAPE {
OPENROWSET (rowsetData,
’SELECT cakeName AS cakeName
FROM cakes
ORDER BY cakeName)

}APPEND(
{

OPENROWSET (rowsetData,
’SELECT cakeName AS cakeName_1,
ingredient AS ingredient
FROM ingredients
WHERE cakeName =’myCake’
ORDER BY cakeName)}

RELATE cakeName TO cakeName _1)
AS ingredients

where the source tables are:
Cakes ingredients

cakeName ... cakeName ingredient quantity
myCake ... myCake sugar ...
Reform ...

Reform eggs ...
...

And the resulting table containing complete cases is:
CakeName ingredients

cakeName_1 ingredient
myCake eggs
myCake flour

myCake

… …

5.3.2 advisor.ado

The classes from the advisor.ado package provide direct access to data
stored in any, database alike, data source; in this case it is a data mining provider.
The classes are derived from the main JACOB class com.jacob.com.Dispatch
(refer to section 5.2.1) as wrappers for ADO. They are source-code equivalent to
those produced by the Microsoft JACTIVEX tool. Interface CommandTypeEnum
stores values of ADO options used to optimize how commands are executed (see
appendix D).

5.3.2.1 RECORDSET

The Recordset object is the COM counterpart of the ODBC resultset dressed
up with some extremely useful facilities, such as bookmarking, filtering, and
sorting. Since it is a COM object it can hardly be exchanged with modules run-
ning on other non-Windows platforms. This class, together with all the other
ADO wrappers for JACOB automation classes, allows direct access to the data
stored in a database-like storage. It extends class com.jacob.com.Dispatch and
delegates all the methods to the underlying IDispatch pointer.

§ The Recordset class constructor calls com.jacob.com.Dispatch con-
structor, which takes an Registry ProgID as an argument and creates new

152 Chapter 5 Implementation

instance of the component specified by that identifier (in the following ex-
ample that is string value ADODB.Recordset):
public Recordset(){

super("ADODB.Recordset");
}

com.jacob.com.JacobObject
com.jacob.com.Dispatch

+m_pDispatch:int
+LOCALE_SYSTEM_DEFAULT:int
+Method:int
+Get:int
+Put:int
+PutRef:int
+fdexNameCaseSensitive:int
+DISPID_UNKNOWN:int
+DISPID_VALUE:int
+DISPID_PROPERTYPUT:int
+DISPID_NEWENUM:int
+DISPID_EVALUATE:int
+DISPID_CONSTRUCTOR:int
+DISPID_DESTRUCTOR:int
+DISPID_COLLECT:int
+DISPID_AUTOSIZE:int
+DISPID_BACKCOLOR:int
+DISPID_BACKSTYLE:int
+DISPID_BORDERCOLOR:int
+DISPID_BORDERSTYLE:int
+DISPID_BORDERWIDTH:int
+DISPID_DRAWMODE:int
#obj2variant:com.jacob.com.Variant
#obj2variant:com.jacob.com.Variant[]
+Dispatch
+Dispatch
+QueryInterface:com.jacob.com.Dispatch
#Dispatch
#createInstance:void
+release:void
+put_Casesensitive:void
+invokeSubv:void
+invokeSubv:void
+invokeSubv:void
+callN_CaseSensitive:com.jacob.com.Variant
+callSubN:void
+callSubN:void
+getIDOfName:int
+getIDsOfNames:int[]
+getIDsOfNames:int[]
+callN:com.jacob.com.Variant
+callN:com.jacob.com.Variant
+invoke:com.jacob.com.Variant
+invoke:com.jacob.com.Variant
+invoke:com.jacob.com.Variant

Command

+Command
+Command
+Execute:Recordset
+Execute:Recordset
+CreateParameter:Variant
+Cancel:void

 properties:Variant
 activeConnection:Connection
 commandText:String
 commandTimeout:int
 prepared:boolean
 parameters:Variant
 commandType:int
 name:String
 state:int

Field

+Field
+AppendChunk:void
+GetChunk:Variant

 properties:Variant
 actualSize:int
 attributes:int
 definedSize:int
 name:String
 type:int
 value:Variant
 precision:byte
 numericScale:byte
 originalValue:Variant
 underlyingValue:Variant
 dataFormat:Variant

Connection

+Connection
+Connection
+Close:void
+Execute:Variant
+BeginTrans:int
+CommitTrans:void
+RollbackTrans:void
+Open:void
+Open:void
+OpenSchema:Variant
+Cancel:void

 properties:Variant
 connectionString:String
 commandTimeout:int
 connectionTimeout:int
 version:String
 errors:Variant
 defaultDatabase:String
 isolationLevel:int
 attributes:int
 cursorLocation:int
 mode:int
 provider:String
 state:int

Fields

+Fields
+_NewEnum:Variant
+Refresh:void
+getItem:Field
+Append:void
+Delete:void

 count:int

Recordset

+Recordset
+Recordset
+getActiveConnection:Connection
+setActiveConnection:void
+setActiveConnection:void
+setSource:void
+setSource:void
+getSource:Variant
+AddNew:void
+CancelUpdate:void
+Close:void
+Delete:void
+GetRows:Variant
+GetRows:Variant
+Move:void
+MoveNext:void
+MovePrevious:void
+MoveFirst:void
+MoveLast:void
+Open:void
+Open:void
+Requery:void
+Update:void
+UpdateBatch:void
+CancelBatch:void
+NextRecordset:Recordset
+Supports:boolean
+getCollect:Variant
+setCollect:void
+Find:void
+Cancel:void
+Save:void
+GetString:String
+CompareBookmarks:int
+Clone:Recordset
+Resync:void
+Seek:void

Figure 5.9 ADO wrapper classes

In order to return ADO wrapper as strongly typed wrapper from method call,
a special constructor has to be created. This constructor makes the wrapper class
instance and copies over the IDispatch reference. This is because a java Dis-
patch object can't be cast to a subclass object. For example, the Recordset class
has a method public Fields getFields()from the Recordset class.

Ideally, wrapper code should wrap the returned Dispatch reference in a
Fields object:
public Fields getFields(){

return new Fields(Dispatch.get(this, "Fields").toDispatch());
}

§ Method getFields() uses a special constructor inserted into the Fields
class. This constructor is used instead of a case operation to turn a Dispatch
object into an ADO wrapper object - it must exist in every wrapper class
whose instances may be returned from method calls wrapped in
VT_DISPATCH Variants.

5.4 Organizer tag library 153

public Fields(Dispatch d){
// gets IDispatch pointer
m_pDispatch = d.m_pDispatch;
// sets the pointer value on null
d.m_pDispatch = 0;

}

The remainder methods from the Recordset class wraps calls to methods
from the Dispatch class, for example:

§ Method Open (Variant source, Variant activeConnection, int
cursorType, int lockType, int options), together with all of it’s
variations with less parameters, opens the cursor. Parameter source is a
Variant object that can be cast to a valid Command object, SQL statement, ta-
ble name, call to the stored procedure, URI or name of File or Stream ob-
ject, that contains a Recordset. The activeConnection parameter is a
Variant that can cast into a valid Connection object or a connection
String. The cursorType parameter is AdoEnums.CursorType value, which
defines the type of the cursor, used by the provider when opening a Re-
cordset (default value is FORWARDONLY – see appendix D). Parameter lock-
Type contains value AdoEnums.LockType that indicates which type of lock-
ing (concurrency control) should be used by provider when Recordset is
opened (default value is READONLY). The options parameter is integer
value that informs the provider which way to evaluate argument source, if
it is not Command object; or what to do when the Recordset should be
loaded from the file it is stored in (it can contain one or more AdoE-
nums.CommandType or AdoEnums.ExecuteOption values). This method
wraps the call:
Dispatch.call(this, "Open", Source, ActiveConnection,

new Variant(CursorType), new Variant(LockType),
new Variant(Options))

§ Methods getEOF(), MoveFirst(), MoveNext() enable moving
through the Recordset. Method getEOF() indicates that the active record
pointer is set behind the last record in the Recordset object. Methods Move-
First() and MoveNext() move the pointer on active record on the first,
and the next record in the active Recordset object, respectively.

5.4 Organizer tag library

This is a utility tag library consisting of tags that are initially developed for
specific application purposes. However, most of the tags implement functional-
ities that can be reused; for example, output a vector in XML format or filter ele-
ments of a vector according to some condition.

Figure 5.10 shows the class diagram of the package portal.taglib.organ-
izer. It contains a few helper classes and tags that are specific for the Interactive
timetable application (EventListTag, LectureEvents, FreeEvents), which

154 Chapter 5 Implementation

will be explained later (refer to section 5.5). In this section the generic classes
CustomEventListTag, FilterTag and OutputXMLTag will be described

0..*

PreparedStatementImplTag
CustomEventListTag

-_statement:PreparedStatement
-et:Events

+executeUpdate:void
+doStartTag:int
+doAfterBody:int
+doEndTag:int
+release:void

 userID:String
 type:String
 listOfEvents:String
 query:String
 preparedStatement:PreparedStatement

TagSupport
OutputXMLTag

+getXMLOutput:void
+doStartTag:int

 src:String

TagSupport
EventListTag

eventList:Vector
year:int
month:int
monday:int
+events:Events[]
-length:int
-begin:int

+doStartTag:int

 userID:String
 toDay:java.util.Date
 listOfEvents:String
 type:String

Events

#ps:PreparedStatement
-eventType:String
-conn:DBConnImpl
+TYPENAME:String

+Events
+prepareStatement:void
+getEvents:Vector

 request:ServletRequest
 type:String
 query:String
 preparedStatement:PreparedStatement
 events:Vector

LectureEvents

+TYPENAME:String

+getEvents:Vector

 type:String
 query:String

interface
PropertyInterface

+get:Object
+put:Object
+remove:Object
+keys:Enumeration

Hashtable
Event

-BeginTime:Date

+Event

 mark:boolean
 eventType:String
 beginHours:int
 duration:int

BodyTagSupport
SourceTag

-sourceName:String

+doEndTag:int
+release:void

 initParameter:String

BodyTagSupport
FilterTag

-source:Vector[]
-noSources:int
-diffSource:Vector
-type:int
SELECT:int
DISTINCT:int
DIFFERENCE:int
ADD:int

+doStartTag:int
+doAfterBody:int
+doEndTag:int
+release:void

 source:Vector
 type:String
 key:String
 value:String
 result:String

FreeEvents

+TYPENAME:String

+FreeEvents
+getEvents:Vector

 type:String
 query:String

TagSupport
WeekViewTag

+make2D:void
+doStartTag:int

Figure 5.10 Class diagram for the Organizer tag library

5.4.1 CustomEventListTag

This tag, for a given userID and specified database query, returns the listO-
fEvents. The listOfEvents is a vector of Events or properties of some, specified
type. These objects are retrieved as a ResultSet of specified query, where each of
them wraps one row. It is essential that elements of the vector are instances of
classes that implement PropertyInterface. Initially, this vector is stored as an
attribute in PAGE_CONTEXT under the name listOfEvents (it can be changed by
setting the scope parameter).

The CustomEventListTag class extends dbtags.PreparedStatementImpl-
Tag from org.apache.taglibs.dbtags tag library (figure 5.11), and therefore
inherits its nested tags <query/>, <execute/> and <setColumn/>. Alas, there are
few differences between these two tags:

§ Unlike the PreparedStatementImplTag class, CustomEventListTag
wraps all database dependant operations. This means that a JSP program-

5.4 Organizer tag library 155

mer does not have to open the connection to the database in the JSP applica-
tion. When using the ETH World portal framework, the connection is taken
from the existing database pool. For any other framework, DBConnImpl class
has to be subclassed. On the other hand, this is also a disadvantage, since the
application, using this tag, is limited to only one database.
§ The result of CustomEventListTag execution is a vector of objects, while
the result of the preparedStatement tag execution is an instance of the Re-
sultSet class.

Events

#ps:PreparedStatement
-eventType:String
-conn:DBConnImpl
+TYPENAME:String

+Events
+prepareStatement:void
+getEvents:Vector

 request:ServletRequest
 type:String
 query:String
 preparedStatement:PreparedStatement
 events:Vector

CustomEventListTag

-_statement:PreparedStatement
-et:Events

+executeUpdate:void
+doStartTag:int
+doAfterBody:int
+doEndTag:int
+release:void

 userID:String
 type:String
 listOfEvents:String
 query:String
 preparedStatement:PreparedStatement

javax.servlet.jsp.tagext.BodyTagSupport
...PreparedStatementImplTag

-_connId:java.lang.String
-_statement:java.sql.PreparedStatement

+PreparedStatementImplTag
#createStatement:java.sql.PreparedStatement
+executeUpdate:void
+executeQuery:java.sql.ResultSet
+doStartTag:int
+doAfterBody:int
+doEndTag:int
+release:void

 query:java.lang.String
 conn:java.lang.String
 preparedStatement:java.sql.PreparedStatement

interface
...taglibs.dbtags.statement.StatementTag

+executeUpdate:void
+executeQuery:java.sql.ResultSet

 query:java.lang.String
 conn:java.lang.String

Figure 5.11 Class hierarchy for CustomEventListTag

Example 5.8 shows one part of the Java Server Page that uses this tag:

Example 5.8:Utilization of the CustomEventListTag tag
<hermione:customEventList id="ud" userID="<%= userID %>"
type="UserData" listOfEvents="uData" >

<sql:query>
SELECT * FROM Student WHERE StudentID = ?

</sql:query>
<sql:execute>

<sql:setColumn position="1"><%= userID %></sql:setColumn>
</sql:execute>

</hermione:customEventList>
<hermione:outputXML src="uData"/>

After execution of these lines, the resulting vector is outputted in XML for-
mat, as it is shown in result 5.9.

156 Chapter 5 Implementation

Result 5.9: CustomEventListTag output
<list>

<UserData>
<StudentID>ANCIKA</StudentID>
...
<currentSemester>5</currentSemester>
<type>UserData</type>
<InroleYear>1998</InroleYear>
</UserData>

</list>

5.4.2 OutputXMLTag

This tag outputs the vector referenced by the src parameter in XML format.
The assumption is that all objects in the vector are instances of the classes that
implement PropertyInterface and therefore its method get(key). For the im-
plementation of this tag, the JDOM library is used. It allows intuitive creation,
manipulation, and output of XML trees.

initial
OutputXMLTag

for(int j=0;j<rs.size();j++)

if(!name.equals(""))

My JSP
root

Element

e
PropertyInterface

member
Element

member1
Element

while(names.hasMoreElements())

1.2.5: addContent(member):org.jdom.Element

1.2.4.1.4: addContent(member1):org.jdom.Element

1.2.4.1.3: addContent(e.get(name).toString()):org.jdom.Element

1.2.4.1.2: get(name):Object

1.2.4.1.1: <constructor>(name)

1.2.3: <constructor>(e.get("type").toString())

1.2.2: get("type")

1.2.1: names:=keys()

1.1: <constructor>("list")

1: getXMLOutput(Vector)

Figure 5.12 The getXMLOutput() method sequence diagram

As indicated on figure 5.12, creation of the XML tree is performed calling the
getXMLOutput() method from the class OutputXMLTag; it is called from the
doEndTag() method, after the source vector, specified by the src parameter in
the pageContext, has been retrieved. Then the iteration through the source vec-
tor and building a JDOM DocumentFragment starts. For each element in the vec-
tor, the corresponding JDOM Element is generated (sequence 1.2.3 in the se-
quence diagram 5.12), whose elements are indicated by keys (sequences 1.2.1,

5.4 Organizer tag library 157

1.2.4.1.1) and content contained in values (sequence 1.2.4.1.3) of the vector object.
The output tree has the following structure:

If the value of a particular attribute is null, then the output tree contains ei-
ther default value or the (key,null) is not forwarded to output.

Using XMLOutputter class the resulting JDOM tree is formatted into a stream
as XML and printed out to JSPWriter, so it could be submitted to the portal
framework.

5.4.3 FilterTag

This tag filters out elements from a source vector, specified by the <source/>
tag, according to a given condition. Tag <source/> can accept two types of
input, Java Vector object or a XML tree. Attribute id holds a reference to a
source vector (Java Vector object) in the pageContext, if the <source/> tag
body does not exist. Here it is, also, assumed that all the objects in the vector
instantiate class that implements PropertyInterface. If the <source/> tag body
exists, then it has to be a correct XML tree; this tree is, while loading, transformed
into Java Vector object with the name specified by id attribute and stored in the
pageContext, where it waits for further processing.

It allows five different types of filtering: SELECT, EXCLUDE, DISTINCT,
DIFFERENCE and ADD. Depending on the type indicated, it can contain different
number of nested <source/> tags. When the filter type is SELECT, EXCLUDE, or
DISTINCT only one source vector can be processed. In other cases, the number of
source vectors is not limited. Parameter key indicates the condition of filtering.
In case of SELECTION, it filters out all the elements whose attributes, which are
named by key parameter, are not equal to the indicated value. For example, in
the example 5.10 by applying the filter tag, of the SELECT type, on the source
vector recipeBook output vector creamy, containing all the cakes that have as
it‘s ingredient 1l milk, is generated.

Example 5.10: Filter tag option SELECT
<organizer:filter type=”SELECT” key=”milk“ value=”1l“ result=“creamy”>

<organizer:src id=”recipeBook”/>
<organizer:filter>

Filter of the EXCLUDE type holds the function inverse to the SELECT filter type.
When applying this type of filter on the input vector, all the elements, holding

list

objectType1 objectType1 objectType2

Key1 Key2

value1 value2

158 Chapter 5 Implementation

the value of the key attribute equivalent to indicated, are filtered out. The follow-
ing relation holds:

sourcevaluekeysourcefiltervaluekeysourcefilter excludeselect =+),,(),,(

When the type of filter is DISTINCT the filtering of keys is performed; actu-
ally, all distinct keys in the vector are identified. Application of this, and the rest
of the filters, is completely intuitive. In that manner example 5.11 can be read as:
find all cakes (vector elements) in the RecipeBook, which contain different
amounts of milk (different values for the milk parameter) among their ingredi-
ents and put them into milky category:

Example 5.11: Filter tag option DISTINCT
<organizer:filter type=”DISTINCT” key=”milk“ result=“milky”>

<organizer:src=”recipeBook”/>
<organizer:filter>

If the filter type is DIFFERENCE, all the elements from the first source, which
have the value for attribute indicated by key parameter equal to some element
contained in any of the other sources are filtered out. This is actually an operation
difference applied in the sets of keys of the first source and all the others. If
keyssrc[i] represents the set of keys for i-th source vector, then operation
DIFFERENCE on n source vectors can be defined with the following expression in
the set algebra:

{ }{ }][]2[]1[]0[\...\\\... nsrcsrcsrcsrc keyskeyskeyskeysresult =

In the example 5.12, from the MyRecipeBook vector all the elements (cakes),
holding the same names as the cakes in the Mom’sRecipeBook vector are filtered
out and new vector named mine is created.

Example 5.12: Filter tag option DIFFERENCE
<organizer:filter type=”DIFFERENCE” key=”name“ result=“mine”>

<organizer:src=”MyRecipeBook” />
<organizer:src=”Mam'sRecipeBook” />

<organizer:filter>

The last case, ADD filter, does not the take parameter key into account. It
simply all the elements of other sources appends to the first <source/>. The
resulting vector of the example 5.13 is a collection of all the recipes that exist in
my (MyRecipeBook), grannies (GranniesRecipeBook) and somebody-else’s
(SmbdsRecipeBook) recipe book, simply listed one after another.

Example 5.13: Filter tag option ADD
<organizer:filter type=”ADD” result=“collection”>

<organizer:src=”MyRecipeBook”/>
<organizer:src=”GranniesRecipeBook”/>
<organizer:src=”SmbdsRecipeBook”/>

<organizer:filter>

5.4 Organizer tag library 159

5.4.4 PropertyInterface, Event and Events

All previously described tags work with object vectors. It is assumed that all
elements of the vectors implement interface PropertyInterface and therefore
its methods get, put, remove, and keys. This, in fact, means that all the objects of
the vector are perceived as objects that have properties defined by (key, value)
i.e. (propertyName, propertyValue) pairs and therefore can be accessed us-
ing the mentioned methods.

For the application Interactive Timetable (refer to section 5.5) the class Event
that implements PropertyInterface has been developed. Along with the al-
ready mentioned methods it contains methods that allow setting and getting an
event type, getting a begin time and duration of an event and marking the proc-
essed events.

initial
Events

while(rs.next())

for(int i = 1;i < rsmd.getColumnCount()+1;i++)

catch(SQLException sqle)

try

JSP application

ps
PreparedStatement

rs
ResultSet

e
Event

rsmd
ResultSetMetaData

while(rs.next())

for(int i = 1;i < rsmd.getColumnCount()+1;i++)

catch(SQLException sqle)

try

1.1.5: close()

1.1.3.4.5: put(new String(rsmd.getColumnName(i)), value)
1.1.3.4.4: getColumnName(i)
1.1.3.4.3: getString(i)
1.1.3.4.2: getString(i)
1.1.3.4.1: getColumnCount():int

1.1.3.3: <constructor>(this.getType())
1.1.3.2: getType():String

1.1.3.1: next()

1.1.2: rsmd:=getMetaData()

1.1.1: rs:=executeQuery()

1.1.4: close()

1: getEvents():Vector

Figure 5.13 The Events:getEvents() method sequence diagram

The Events class allows generation of the list of Event objects from the speci-
fied database query. Each tuple from the database ResultSet is mapped to one
Event object. This means that each column name is mapped to the corresponding
property name and the same goes with values. A List (Vector) can contain var i-
ous types of Event objects. Figure 5.13 shows the sequence of actions that are
taken during the execution of the getEvents method.

160 Chapter 5 Implementation

5.5 Interactive Timetable

In the previous sections, the advisor and organizer tag libraries are explained
and in this section one possible application of these two will be shown. Since the
motivation for developing both, the portal framework and the recommendation
library, lies in the ETH World project, Interactive Timetable as one their em-
ployment is a straightforward application of the same idea. As already men-
tioned, the idea of the ETH World project is to build a virtual bridge between two
existing physical locations at ETH, and that way provide better interaction be-
tween ETH and its members. Since the topic of this thesis includes portals and
personalization it is easy to guess that it suggests a portal as the tool for that in-
teraction.

Figure 5.14 A student portal

Figure 5.14 gives an impression of what that portal, in fact just one its part,
should look like. In the middle of the page the week view on my agenda is sh-
own. In the left, larger part, the week view to all the user duties is shown. Using
the buttons, previous and next, it is possible to scroll through the weeks; Pluses
and minuses allow customisation of the existing view i.e. adding or removing
events. These events can be connected to some course and therefore be public
and already scheduled (lectures, exercises, colloquium, exams) or student’s own
(whereas they can again be defined to be visible to the others). At the moment
two more applications are developed. One allows course selection whereas the
other recommends which courses to select (refer to sections 5.5.3, 5.5.4).

Let us take, for example, an ordinary student, graduate, a researcher (PhD or
PhD student), an assistant or a professor at ETH; the things that all of them share

5.5 Interactive Timetable 161

are the courses and timetables for those courses. These timetables, though in a
part completely the same for large groups of people, are still very much different
for each member of every group. All the members of the same group should have
the matching parts in their timetables. Usually, that matching parts can be auto-
matically presented to each of the members of that group. Initially, for students
these groups are made compliant to the course of studies and the semester the
student is in. But then, they change in conformance to the courses that specific
students choose or visit. The selections, made by the student, can then be used
for recommendations during the course selection process. There are various rea-
sons why people visit some courses: some are motivated by the topic itself, others
are motivated by the people that have chosen the same courses, yet others by the
people who give those courses, or people simply choose courses regarding the
way they fit in their existing schedule. For each student alone, it is always hard
work to collect all this information, although it is publicly available. This was the
motivation for developing a student portal. When a student enters the ETH
World all this information should some way become available to him (her).

5.5.1 The CourseScheduler Database

The database CourseScheduler was developed for prototyping purposes. In the
real environment this would probably be a federation of databases, each of which
would contain just one part of the data (or metadata). Most of the data, indeed,
already exists in various university databases and is used for completely differ-
ent purposes. It is this combination of the existing data that can produce new
knowledge and therefore improve interaction between the ETH and its individ-
ual members.

Figure 5.15 shows the schema of the underlying database. The database is
modelled by having the following considerations in mind:

§ Users can be either Students or Lecturers (professors, assistants).
§ During different semesters, each Student can attend (isAssignedTo) differ-
ent LectureEvents for various Courses that are available (CoursesAvailable) on
the student’s course of studies. If some student is not assigned to any of the
events for a particular course, then he or she is, by definition, not assigned to
the course itself.
§ In various archives exists information about the courses the students
have already listened and passed (ExamsPassed).
§ Courses differ from semester to semester by the people who teach them
(Teaches); by the topics presented (Document), and the type of the events that
are connected to these courses (Lecture).
§ Along with these university related events, each user, be it a Student or a
Lecturer, can visit events that are not falling into this category i.e. sport,
movie, … (UserEvent) and thus have as an entry in his or her timetable.

162 Chapter 5 Implementation

These events can be: private, visible only to student’s friends, or public (refer
to section 5.5.3).

BlockLecture
LectureID(FK)

StartDate
EndDate

Course
CourseID

CourseNumber
Name
Abbreviation
Program
credits
homepage
CourseType
color

CourseForYear
ID

CourseID(FK)
SemesterYear
ss
se

CoursesAvailable

DirectionOfStudies
CourseID(FK)

Document
DocumentID

title
Format
forCourse.CourseID(FK)
introducedOn.LectureID(FK)
references
date
Author

Events
EventID

Termin
duration
Description
visibility
regularity
defaultcolor

ExamsPassed

percent_mark
ex_period
OID
StudentID(FK)
CourseID(FK)

IsAssignedTo

StudentID(FK)
CourseEventID.OID(FK)
ID
duringSemester
color

LectureEvent
OID

LectureID(FK)
Day
Duration
beginTime

Lecturer
LecturerID
personalityId(FK)

Student
StudentID.personalityId(FK)

attrs
currentSemester
InroleYear

Studies

DirectionOfStudies
StudentID(FK)

Teaches

LecturerID(FK)
CourseID.ID(FK)
personalityId(FK)

UserEvent

UserID.personalityId(FK)
EventID(FK)
visibility
regularity
usercolor

Users
personalityId

name
login
password
email
group

Lecture
LectureID

CourseID.ID(FK)
Type
NoOfClasses

Room
LectureAttrsID.OID(FK)

RoomNo

FK_ExamsPassed_Student

FK_BlockLecture_Lecture

FK_CourseForYear_Course

FK_CoursesAvailable_Course

FK_Document_Lecture

FK_Document_Course

FK_ExamsPassed_Course

FK_IsAssignedTo_LectureEvent

FK_Lecture_CourseForYear

FK_LectureEvent_Lecture

FK_IsAssignedTo_Student

P

FK_Room_LectureEvent

FK_Lecturer_User

FK_Student_Users

FK_Studies_Student

FK_Teaches_CourseForYear

FK_Teaches_Lecturer FK_UserEvent_Events

FK_UserEvent_Users

Figure 5.15 The scheme for the Course Sheduler relational database

5.5.2 Data Mining Model

Since most of the features of a data mining model are described in the previ-
ous chapters (refer to chapter 5.2.2), here just a short look will be taken at the way
the model, used for this application, is presented and processed using Microsoft
Analysis Manager. Figure 5.16 shows the schema for the LectureRecommenda-
tion mining model and the way it could be created using <advisor:create/>
tag.

When creating the mining model from the Microsoft Analysis Manager, ma-
jority of the parameters from the <connect/> and <rowsetData/> tags are omit-
ted, since they are already defined somewhere else in the data mining tool. The
LectureView that is used, as a supporting (input) table, is created over tables Us-
ers, Student, isAssignedTo, LectureEvent, Lecture, CourseForYear and Course from the
CourseScheduler database. It connects directly students and courses these students
are assigned to. As mentioned earlier, the basic assumption in the CourseScheduler
database is that a student cannot be assigned to a course if he or she is not as-
signed to any of the events for that course (e.g. lectures, exercises, tutorials …).

5.5 Interactive Timetable 163

Figure 5.16 The scheme for the LectureRecommendation DMM
Example 5.14:Create Mining Model
<harry:create model="LectureRecommendation" clusterCount=”3”>

<harry:caseTable>Student</harry:caseTable>
<harry:inputTable>StudentID</harry:inputTable>
<harry:caseColumn>LectureView</harry:caseColumn>
<harry:inputColumn>CourseeID</harry:inputColumn>
<harry:connect>Location=GORILLAZ;Provider=msolap;

MiningLocation=c:/CourseScheduler;</harry:connect>
<harry:rowsetData>'SQLOLEDB.1','Persist Security Info = True;
User ID= sunpress; Password=sunpress; Initial Catalog =
CourseSchedule; Data Source=GORILLAZ</harry:rowsetData>
<harry:sourceTable>'SQLOLEDB.1','Provider=SQLOLEDB.1;Integrated
Security=SSPI; Persist Security Info=False;InitialCatalog =
CourseSchedule; Data Source=GORILLAZ</harry:sourceTable>

</harry:create>

Figure 5.17 shows the content of the LectureRecommendation mining model.
It can be perceived as a one level tree structure, where each cluster is one node in
that tree coloured according to the data distribution. The ones that contain more
cases are darker. As indicated in the sections 3.3.1.5 and 5.2.2, there are no clear
boundaries between different clusters. So, each of the cases belongs partly to each
of the clusters. The cluster, where the probability of belonging for the case is the
greatest, is the one to be returned when the model is queried through OLE DB
for Data Mining.

164 Chapter 5 Implementation

Figure 5.17 The content of LectureRecomendation DMM

5.5.3 The InteractiveTimetable Application

It is the main idea of the portal to gather all the information, in any format,
that is valuable for one person, organization or any other kind of community ar-
range them in a personalized way for each of its users and allow every kind of
that information intermixing. It would be more than optimistic to expect from
one application to do that. Therefore, the portal is not just one application, it is an
agglomeration of very different applications that by normally executing, and at
the same time interacting among them, and with the rest of the world collect,
categorize, process, organize and personalize the data. In order to make all these
applications work together and show their heterogeneous outputs on one dis-
play, be it a desktop, laptop, PDA or a mobile phone. Hence, there has to exist
one application that will organize just output, display and arrangement of all the
other applications. In a word: “a manager-application”. Here, it is the Interac-
tiveTimetable application. Since this is just a prototype InteractiveTimetable is
not really a very sophisticated application. For the moment it includes all the
channels (applications) available and displays their output. Example 5.8 shows a
part of this xJSP application.

As a result of the InteractiveTimetable application execution XHTML file that
contains already ‘styled’ included applications is received. Applications are inte-
grated into the InteractiveTimetable using a <portal:include/> tag. They are
arranged in the way it is indicated by the XSL stylesheet assigned to the Interac-
tiveTimetable application. For example, a stylesheet that produces an output as
shown in the figure 5.14 is indicated in the example 5.16. Template part

5.5 Interactive Timetable 165

<xsl:copy-of select="./*" /> copies everything enclosed within the tags
indicated by match clause of the template (e.g. <xsl:template
match="ChooseLectures">). Since in this case it is a call to another application
that application has to produce a correct XHTML output or the application Inter-
activeTimetable will return an error.

Example 5.15 extract from InteractiveTimetable.xjsp
<IntAge xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">
<%@ taglib uri=http://www.vis.ethz.ch/~kai/da/taglib/portal prefix="portal" %>
<%@ taglib uri=http://jakarta.apache.org/taglibs/utility
 prefix="util"%>
...
<PortalAgenda>

<portal:include uri="/apps/PortalAgenda.xjsp" />
</PortalAgenda>
<jsp:useBean id="appName" scope="page" class="portal.organizer.Name"/>
<jsp:useBean id="values" scope="page" class="java.lang.String[3]"/>
<util:If predicate="<%= appName.equals(values[0]) %>">

<Recommend>
<portal:include uri="/apps/Recommend.xjsp" />
</Recommend>

</util:If>
<util:If predicate="<%= appName.equals(values[1]) %>">

<ChooseLectures>
<portal:include uri="/apps/ChooseLectures.xjsp" />
</ChooseLectures>

</util:If>
<util:If predicate="<%= appName.equals(values[2]) %>">

<AddEvent>
<portal:include uri="/apps/addEvent.xjsp" />
</AddEvent>

</util:If>
...
</IntAge>

For any other arrangement of the included applications, or omitting some of
them or even including new ones it is necessary to make new XSL stylesheet.

Example 5.16 Stylesheet for InteractiveTimetable.xjsp
...
<xsl:template match="IntAge">
<HTML>

<HEAD>
<xsl:call-template name="css" />
<link rel="stylesheet" href="appstyle.css" type="text/css"/>
</HEAD>
<BODY>
<TABLE bgcolor="#e0e0e0" width="100%" height="80%">
<TR>
<TD width="80%"><xsl:apply-templates select="PortalAgenda" /></TD>
<TD width="100" ALIGN="right" style="font-size:8pt;">
<xsl:apply-templates select="ChooseLectures" />
<xsl:apply-templates select="Recommend" />
<xsl:apply-templates select="AddEvent" />
</TD></TR>
</TABLE>
</BODY>

</HTML>
</xsl:template>

166 Chapter 5 Implementation

Example 5.16 Stylesheet for InteractiveTimetable.xjsp (continued)
<xsl:template match="PortalAgenda">

<xsl:copy-of select="./*" />
</xsl:template>
<xsl:template match="ChooseLectures">

<xsl:copy-of select="./*" />
</xsl:template>
<xsl:template match="Recommend">

<xsl:copy-of select="./*" />
</xsl:template>
<xsl:template match="AddEvent">

<xsl:copy-of select="./*" />
</xsl:template>

5.5.4 The Portal Agenda Application

The PortalAgenda is standalone web application that automatically generates
a personal week view of all the important events for each portal user. Default
view shows to a user all the events (typically university obligations) that can be
derived from the available information on that particular user. User can, later on,
customize the default view to his or her own. This, actually, means that he or she
can add new or delete existing events and choose to share some of newly added
events with friends or with everyone else (refer to section 5.5.6).

What makes this agenda different from most of the available ones is possibil-
ity to visualize parallel events. It is obvious that one person cannot be on more
than one place at the same time, so this feature plays important role only in initial
cases, when more people are in play and before the course list is customized. One
could imagine the following scenario:

§ Fifth semester Computer Science student enters the ETH World through
his or her portal the first time in the current semester.
§ Since the student has not decided yet which lectures to visit in the cur-
rent semester, he or she chooses show all possibilities option. This agenda
would then, have a look similar to the one shown by figure 5.18. Its basic
disadvantage is the information overload, while an advantage it provides to
user is a high degree of freedom.
§ Student could then customize personal view by taking out the courses that
are not of her or his interest.

The other possible situation is the one where most of the courses are fixed i.e.
students are not allowed to choose them (for example, on first two years of Com-
puter Science study here on ETH or even later the departments where credit sys-
tem is not applied). Then majority of students have the same schedule and there
exist just slight variations, between the exercise groups, for example.

The PortalAgenda application fetches the data from the database using the
<eventlist/> tag and then formats it into XML using the <weekview/> tag.

5.5 Interactive Timetable 167

Tags <eventlist/> and <weekview/> are implemented for this application
needs, therefore they will be described in the following sections.

Figure 5.18 Overview of available lectures in the 5th semester

5.5.4.1 EVENTLISTTAG

Unlike the <customEventList/> tag, which generates a vector of objects of
the Event class based on the ResultSet of the specified database query, the
<eventList/> tag generates output vector, with already defined structure. The
generated vector, as a result of the call to the Events.getEvents() method, con-
tains events (instances of the Event class) that wrap records of the ResultSets
of the queries, specified in the FreeEvents, LectureEvents, SomeEvents classes
and so on. These classes inherit the Events class and override the getEvents()
method, so that it returns events of the type specified by that query; in fact, the
call to LectureEvents.getEvents() returns the vector of Event objects of the
Lecture type… The <eventList/> tag allows, however, some adjusting. Having
in mind that the list of events is different for each separate user, by indicating the
user parameter it is defined what user is in question. Since the overview of
events is limited onto one week, parameter toDay indicates the date in the week
that should be rendered. It is assumed that the first day in the week is Monday
and the last is Sunday. The third parameter is scope, which indicates visibility
and the persistence of the resulting vector referenced by the listOfEvents at-
tribute (refer to sections 4.4 and 5.4.1). Example 5.17 shows one utilization of the
<eventList/> tag:

168 Chapter 5 Implementation

Example 5.17: one utilization of the <eventList/> tag
...
<util:If predicate="<%= evList==null %>" >

<organizer:EventList userID="<%= userID %>" listOfEvents="evList"
toDay="<%= TodayBean.getDate()%>" />

</util:If>
<organizer:outputXML src="evList"/>

As a consequence of generating the output with <outputXML/> tag, XML tree
has very simple structure. The nodes in the tree can be of the different type, as
shown by the result 5.18.

Result 5.18 a part of the application 5.17 output
<list>

...
<Lecture>

<usercolor>no</usercolor>
<ltype>U</ltype>
<dayNo>4</dayNo>
<duration>2:00</duration>
<defaultcolor>#0099cc</defaultcolor>
<Homepage>cs.inf.ethz.ch/edu/37-201/</Homepage>
<CourseID>7</CourseID>
<Termin>2002-05-30 14:00:00.0</Termin>
<type>Lecture</type>
<day>Thursday</day>
<OID>16</OID>
<description>System-Software</description>

</Lecture>
<Free>

<visibility>public</visibility>
<usercolor>no</usercolor>
<dayNo>5</dayNo>
<duration>2:00</duration>
<defaultcolor>#8080C0</defaultcolor>
<regularity>weekly</regularity>
<Termin>2002-05-31 19:15:00.0</Termin>
<type>Free</type>
<day>Friday</day>
<OID>2</OID>
<description>Volleyball</description>

</Free>
...

</list>

It is obvious that the nodes Lecture and Free can contain different number
of elements, where some of them exist only as a part of the Lecture node (for ex-
ample, Homepage, ltype), while others exist only in the Free node (for example,
visibility).

Transformation of this tree using the XSLT becomes complicated due to the
following reasons:

§ The XSLT template will contain a large number of <xsl:if/> (i.e.
<xsl:when/>) elements, since for each node type appropriate stylesheet
should be indicated.

5.5 Interactive Timetable 169

§ In order to make some other structure out of this flat one, for example ta-
ble, the advanced knowledge in XSLT programming is required, since stan-
dard editors do not support complex operations.

5.5.4.2 WEEKVIEWTAG

Unlike the <outputXML/> tag, the <weekview/> tag transforms input vector
into an XML tree, holding the structure defined by the XSL-Scheme, rendered on
the figure 5.19 (xsd file is in the appendix B). This structure is then easily
transformed into output format applying a XSL stylesheet (one stylesheet is
shown by example 5.19). This tree, along with the information, contained in the
source vector of events, contains some additional information about the layout.
Similar to the <eventlist/> tag, <weekview/> tag takes, as parameters, the first
and the last of the week to be displayed; hence, in the xJSP application it is called
with:

<organizer:weekview src="eventList"
firstDay="2002-05-27"
lastDay="2002-05-31"/>

where it is assumed that the source vector is stored in the pageContext and the
difference between dates indicated by the firstDay and lastDay parameters is
not greater than 6 days. If these parameters are not indicated, it is assumed that
all the members of the eventList vector should be displayed.

Root element <Agenda/> contains one <Workdays/> subtree and one or more
<TimeAgenda/> elements. Each of the <Day/> elements in the <Workdays/> sub-
tree along with the CDATA value, which stands for the name of the working day
on the selected language, also contains the date and maxevents attributes that
represent the date and the maximum number of overlapping events for that day.
Due to HTML characteristics, an XML tree has to hold specific structure. Since
the table is drawn raw by raw, events (Time Based – TBEvent) are grouped, first
by days (DayEvents), and then by time they begin at i.e. each <TimeAgenda/>
looks like (TimeAgenda{begintime,DayEvents}).

For the information visualization, consistent with needs and priorities of each
user different XSL stylesheets can be used or the existing one can be adjusted.
One possible stylesheet example is used in the example 5.19.

170 Chapter 5 Implementation

Fi
gu

re
 5

.1
9

1
XM

L
sc

he
m

e
fo

r t
he

 X
M

L
tr

ee
 g

en
er

at
ed

 u
si

ng
 th

e
<w

ee
kv

ie
w/

>
ta

g

5.5 Interactive Timetable 171

Example 5.19 Stylesheet for InteractiveTimetable.xjsp

<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl=http://www.w3.org/1999/XSL/Transform ver-
sion="1.0">
<!—ukljucuje CSS file sa stilovima-->
<xsl:include href="css.xsl" />
<!—defines tip izlaznog file-a -->
<xsl:output method="html"/>
<!—defines promenljivu wdays -->
<xsl:variable name="wdays" select="Agenda/WorkDays"/>
<xsl:template match="/Agenda">
<atitle>

<!—adds dynamic link to timetable for the previous week-->
<a><xsl:attribute name="href">PortalAgenda.xjsp?previous=
<xsl:value-of select="$wdays/Day[1]/@date"/></xsl:attribute>

<!—adds title-->
Schedule for the week:
<xsl:value-of select="$wdays/Day[1]/@date"/> -
<xsl:value-of select="$wdays/Day[last()]/@date"/>

<!—adds dynamic link to timetable for the next week -->
<a><xsl:attribute name="href">PortalAgenda.xjsp?next=
<xsl:value-of select="$wdays/Day[last()]/@date"/></xsl:attribute>

</atitle>
<table width="600" cellspacing="0" cellpadding="0" height="80%">

<!—sets the first row of timetable (i.e. names of the days) -->
<tr>

<th>TIME</th>
<xsl:for-each select="$wdays/Day">

<th width="16%">
<xsl:attribute name="colspan">

<xsl:value-of select="number(@maxevents)"/>
</xsl:attribute>
<xsl:value-of select="."/>
</th>

</xsl:for-each>
</tr>

<!—sequential pass through, by beginTime, ordered file -->
<xsl:for-each select="TimeAgenda">
<tr>

<!—in each pass writes start time-->
<th><xsl:value-of select="beginTime"/>:00</th>

<!—and calls named template columns -->
<xsl:call-template name="columns">

<xsl:with-param name="TimeAgenda" select="."/>
<xsl:with-param name="fDay" select="1"/>
<xsl:with-param name="event" select="1"/>

</xsl:call-template>
</tr>

</xsl:for-each>
</table>
</xsl:template>

172 Chapter 5 Implementation

Izvod 5.19 Stylesheet za InteractiveTimetable.xjsp (nastavak)
<xsl:template name="columns">

<xsl:param name="TimeAgenda"/>
<xsl:param name="fDay"/>
<xsl:param name="event"/>
<xsl:if test="$fDay <= 7">

<xsl:variable name= "day" select="$ways/Day[$fDay]"/>
<xsl:variable name="cs" select="$wdays/Day[$fDay]/@maxevents"/>

<!—passes through all events,startin on day at beginTime-->
<xsl:if test="$TimeAgenda/DayEvents[$event]/@day = $day">

<xsl:for-each select="$TimeAgenda/DayEvents[$event]/TBEvent">
<td>

<!—and for each of them sets the background color, title,...-->
<xsl:attribute name="bgcolor">
<xsl:value-of select="@color"/>
</xsl:attribute>
<xsl:attribute name="rowspan">
<xsl:value-of select="number(@duration)"/>
</xsl:attribute>
<xsl:attribute name="colspan">
<xsl:value-of select="number(@cs)"/>
</xsl:attribute>
<a>
<xsl:if test="ltype='U'">

<xsl:attribute name="class">abc</xsl:attribute>
</xsl:if>
<xsl:if test="count(references/link)>1">

<xsl:attribute name="href">
http://www.<xsl:value-of select="references/link"/>
</xsl:attribute>
<xsl:value-of select="title"/>

</xsl:if>

<a>
<xsl:if test="count(references/link)>1">

<xsl:attribute name="href">
<xsl:value-of select="references/link[@type='r']"/>
</xsl:attribute>

</xsl:if>

<a>
<xsl:attribute name="href">
<xsl:value-of select="references/link[@type='a']"/>
</xsl:attribute>

</td>
</xsl:for-each>

</xsl:if>
<!—and then passes onto the next event -->
<xsl:call-template name="columns">

<xsl:with-param name="TimeAgenda" select="."/>
<xsl:with-param name="fDay" select="$fDay+1"/>
<xsl:with-param name="event" select="$event+1"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

It is illustrated in the example 5.19 that there exist two types of the XSL tem-
plates, unnamed and named. Unnamed templates are requested at the moment

5.5 Interactive Timetable 173

when the processor, while dealing with XML file comes across an element with
name specified in the match clause (<xsl:template match="Agenda"> or
<xsl:apply-templates match="$wdays/Day">). The named templates can also
contain variables, which are passed on to template value (<xsl:call-template
name="columns">). XSLT enables recursive template calls [XSLT].

5.5.4.3 ADDEVENT, REMOVEEVENT

“Portlet” AddEvent is a part of the PortalAgenda application, which provides
the possibility to insert new events into the timetable. It is shown by the figure
5.14, that this xjsp application is called by clicking the “plus” link, anywhere in
the table. The day, date and time are passed as arguments (for that the DateBean
is used). Communication to the database is performed using tags from the
dbtags tag library (refer to section 4.4.2.4). By utilizing get and set methods of
the DateBean class the indicated parameters of the PortalRequest are accessed
(see [J2EE]).

Example 5.20 AddEvent.xjsp
<?xml version="1.0" ?>
<AddEvent xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">

<%@ taglib uri="http://jakarta.apache.org/taglibs/dbtags" prefix="sql" %>
<%@page extends="portal.framework.PortalJspPage" %>
...
<jsp:useBean id="dBean" class="portal.taglib.organizer.DateBean"/>
<jsp:setProperty name="dBean" property="day" param="day" />
...
<newEvent>
<day><%= dBean.getDay()%></day>
<date><%= dBean.getDate()%></date>
<time><%= dBean.getTime()%></time>
</newEvent>
<util:If predicate="<%=request.getParameter("submit")!=null%>" >
<sql:connection id="conn">

<sql:url>...</sql:url>
<sql:driver>...</sql:driver>

</sql:connection>
<sql:statement id="stmt1" conn="conn">

<sql:query>
select max(EventID) from Events

</sql:query>
<sql:resultSet id="rset1" >
<sql:getNumber position="1" to="evid" scope="page"/>

</sql:resultSet>
</sql:statement>
...
<sql:preparedStatement id="stmt2" conn="conn">

<sql:query><%@ include file="addEvent.sql" %></sql:query>
<sql:execute>
<sql:setColumn position="1"><%=dBean.getSQLT()%></sql:setColumn>
...
</sql:execute>

</sql: preparedStatement>
<% response.sendRedirect("PortalAgenda.xjsp?appName=Recommend");%>
<sql:closeConnection conn="conn"/>
</util:If>

</AddEvent>

174 Chapter 5 Implementation

Example 5.20 shows that the AddEvent application is comprised of two parts.
First part, before the condition (<util:If>), is executed every time the applica-
tion is called, while the second part, which includes writing to the database (tags
<statement> and <preparedStatement/>), is executed only if the “add event”
button is pushed. After the execution of this, conditional part, the redirection to
other application is performed; hence, this xJSP application has to extend the
portal.framework.PortalJspPage class (refer to section 4.3.2).

Opposed to AddEvent, the RemoveEvent application removes the selected
event from the list of actual events for the given week. The selected event can be
of any of the previously mentioned types (here, LectureEvent or FreeEvent).

5.5.5 The ChooseLectures Application

The ChooseLectures application presents to the identified user (in this case
student) the list of courses available in the current semester, based on data avail-
able on that user (here: course of studies and current semester). The strudent is
allowed to choose the courses from the presented list that he’d like to attend.
From the list of all the courses available in the current
semester, the ones, that the user had passed are removed
(the filter tag is used, refer to appendix C), and the result
is presented to the user. When the student selects the
course and adds it to the list of his/her own courses, it is
immediately shown in the timetable (application Por-
talAgenda) that shows the week program of student’s re-
sponsibilities. Similar to the AddEvent application, this
application is comprised of two parts that are executed
depending ob the fact whether the selection was or was
not performed. Unlike the other application, here both
parts communicate to the database, where in the first part
(which is always executed) only reading from the data-
base is performed, while in the other part database is also
accessed for writing i.e. connecting all the events related
to the particular course with the active user. Figure 5.20
shows one possible manifestation of this application.

Figure 5.20 The ChooseLectures application

5.5.6 The Recommend Application

This application, as previously mentioned, recommends the courses. By using
the tags from the advisor tag library the cluster, the identified user, in the indi-
cated interest space belongs to. In this application user interests are represented
by the courses that that user selected once. Then, that active user is presented all
the features of the cluster, that user belongs to, and are not the features of his
own. In fact, the student is presented the courses selected by the other student

5.5 Interactive Timetable 175

that belong to same cluster. As some kind of explanation, student is presented all
other students, which belong to the same cluster. Clicking the link, the name of
the user, it is possible to send him an e-mail. By clicking the chat button, beside
student’s name, the real-time communication, with another student from the same
cluster, is started (using the ICQ client). The privacy violation that exists in the
prototype can be solved by using aliases and groups. The number of clusters is
automatically tuned to the number of users (for example, first integer value
greater that the square root of the total number of students), but can also be
manually set in the application using the retrain tag. However, this way the
application performance is significantly reduced, since the time for retraining is
required.

Figure 5.21 The Recommend application

Example 5.21 Recommend.xjsp
...
<recommendations>

...
<harry:getModelInfo id="MI" forModel="LectureRecommendation"/>
<harry:query model="LectureRecommendation"
caseID="<%=userID%>" result="RS" />
<hermione:filter type="SELECT" key="StudentID"
value="<%= userID %>" result="selected">
<hermione:source id="SameInterests" >
<harry:getColumns model="LectureRecommendation" queryRS="RS" />
</hermione:source>
</hermione:filter>
<hermione:filter type="DIFFERENCE" key="CourseID" result="filtered">
<hermione:source id="SameInterests"/>
<hermione:source id="selected"/>
</hermione:filter>
<hermione:outputXML src="filtered"/>
<harry:getColumns model="LectureRecommendation" queryRS="RS"
attribute="name"/>

</recommendations>

Figure 5.21 shows one possible interface for this application (blue part). While
the upper part contains the list with recommended courses the lower contains

176 Chapter 5 Implementation

other users “similar” to the identified one. When the link of some course from the
list is clicked, it is attached to the user’s list of selected courses, and to his timeta-
ble, which is immediately noticeable in the PortalAgenda application. In the ex-
ample 5.21 the part of the xjsp code for this application is shown.

In this example, both advisor (namespace harry) and organizer (namespace
hermione) tag libraries are used. In order to be able to generate
recommendations application needs to get all the information (tag
<getModelInfo/>) on the clustering model LectureRecommendation (refer to
section 5.5.2), and then access the information on cluster that the active user
(identified by userID) belongs to (tag <getColumns/>). After that, the courses
selected by the active user are filtered out from all the courses that describe the
identified cluster (SELECT and DIFFERENCE filters); and the active user is
presented the others, as well as the other users belonging to the same cluster
(<getColumns/> with the name attribute of the inputTable). As already
mentioned in the section 5.3 (see also the appendix B), this tag provides access to
all the table columns used for clustering (inputTable). Hence, application
programmer has a higher degree of freedom when knowing all these attributes
(belonging to caseTable and inputTable).

177

6 Conclusion

6.1 University Portals

The World-Wide-Web has grown to be all-purpose tool, used in everyday
work, for information retrieval and business execution processes. Web is respon-
sible for the revolutionary changes in both, the function and the availability of in-
formation. Almost any task, even the simplest web search, the basic work or aca-
demic task, requires coordination of myriad of information sources, processes
and data – not to mention the integration of a multiple of desktop, enterprise,
and web technologies. To date on the web there are over three billion of web
pages, and search engines (horizontal portals) are still ineffective in a try to re-
duce list of hits onto acceptable size, and in the given context, rank results in a
meaningful manner. They do not solve the problem that appears during naviga-
tion process and leads to user disorientation in the hyperspace, neither multime-
dia contents problem. Opposed to horizontal, vertical, in fact, corporate portals
support basic transformation of the user’s view to the information management
process within the organization. Their role includes, not only helping particular
users to find the sense in the piles of available data, but also help them keep that
knowledge. Institutional information portal, as a subgroup of vertical portals,
represents an “application“ that provides its users with unique, intuitive and
personalized access and integration of information specific to that institution,
stored in the internal databases and systems, with the information from the out-
side world. The browser represents the basic and ubiquitous client for the portal,
which is a universally available framework. As such, portal represents the shift in
the philosophy of the institution, which utilizes it, when providing services, as
well as a great shift to the user – oriented design. In the portal structure the user
is a “star” and all the contents and all services are adjusted to that basic idea. In
particular, old-fashioned time/place/content predetermined education moves to-
ward just-in-time/at work-place/customized/on-demand process.

The ETH World portal framework is just one small step towards what real
university portal should represent. Unlike uPortal (refer to section 4.6.3), which
is predominantly information supply oriented, the focus of this project is a bit
shift to both, education and socialization processes. The recommendation module
holds in that the main part. As it is obvious from the Recommend application this

178 Chapter 6 Conclusion

module enables, not only recommendation generation, but also virtual commu-
nity formation. The problem of detecting virtual communities and social net-
works has been examined in [KAU97]. Numerous studies have shown that one of
the most effective channels for dissemination of information and expertise within
an organization is its informal network of collaborators, colleagues and friends.
Part of the success of these networks can be attributed to the “six degrees of sepa-
ration“ phenomena, which states that the distance between two individuals in
terms of direct personal relationships is relatively small. An equally important
factor is that there are limits as to the amounts and kind of information that a
person is able or willing to make available to the public at large. Hence, the main
objective of the Referral Web project, described in [KAU97] consists in detection
of the existing social networks with the goal of recommendation generating and
not initiation for forming new ones. In the computer era, however, this last aspect
gains on its importance since the alienation has become very broad problem. This
thesis was a try to reduce the alienation existing in the university environment.

6.2 Possible Improvements

In the fourth and fifth chapter it is explained that the goal of the developed
module was implementing the additional functionality to the ETH World portal
framework: a recommendation generation. Due to the experimental nature of the
whole framework, this module was developed as a tag library, which for com-
munication to database and the data mining provider uses already existing 3rd
party components. These components have brought some limitations into imple-
mentation: used dbtags tag library does not support transactions, and JACOB
bounds the platform to Windows, which is the consequence of using COM.

Employed data mining provider Microsoft Analysis Services limits the data
mining algorithms on decision trees, and EM clustering. One of the biggest weak-
nesses of this type of clustering is that the number of clusters must be fixed initial
to the training process. Implemented tag library performs clustering based only
on presence or absence of particular dimensions. In fact all the dimensions have
same weights. The extension on weighting scheme is straightforward; it requires
adding new attribute to the <create/> tag. The use of other data mining algo-
rithms is limited to those implemented by the providers, which support OLE DB
for Data Mining. Module can be extended in a way that it accepts queries formu-
lated in PMML (Predictive Model Markup Language) [PMML]. These features
would provide application programmer more freedom, which implies the need
for better notion of data mining algorithms. Knowing that, in the meantime, a new
standard tag library - jstl appeared wthat implements all dbtags functionalities,
and transactions, one of the next goals would be to adjust the handler class for
<customEventList/> tag, in such manner that it utilizes the classes from this
tag library. Due to rise in popularity of uPortal and Cocoon frameworks, an in-
terface to them would be useful. The latter would make this tag library available

6.3 Utilization 179

to a number of portal frameworks (since the sunSpot portal engine for Cocoon
appeared in the second quarter of 2002).

6.3 Utilization

One of possible use of the developed libraries advisor and organizer is illus-
trated in the sections 5.5, 5.6 and 5.7. In the section 5.1 it is also conveyed that the
advisor tag library can be used for clustering other kinds of contents, too.

Figure 6.1 The Chariot system for image retrieval

In this section a short explanation on how it is possible to extend existing
Chariot Image Retrieval system [CH00], implemented on Tk/tcl platform (figure
6.1) is given. S ince this system does not have the user, only session identification,
it is possible to select anonymous profiles. The profiles comprise a session identi-
fier, rated image identifiers and the ratings, i.e. a log relation should have the fol-
lowing format (session_id, image_id, rating).The process of clustering is,
then performed based on session_id. The active session can be represented in
the following profile format (log1, log2… logn), where n is a number of rated
images. At the moment, in order to be able to pose a query data has to be stored
in the database, with session_id as key attribute. The key is, as an active session
identifier, sent to some kind of Recommend application (e.g. parameter case_id
in the <query/> tag). The application, as a result, gives identifiers of the first k
highest rated images from the cluster that the active session belongs to. That way
a CF recommendation is formed. These results can be later combined with those
got using an IR method, for example, by showing only those images that are ele-
ments of both lists.

180 Chapter 6 Conclusion

6.4 Usability of the Developed Platform

As an outcome of information technology boom in the last twenty years of the
twentieth centaury motto: “if you are not on web then you don’t exist”. Every-
body wanted to “get out” on the web and each sphere of contemporary life re-
ceived its e variant (e-mail, e-business, e-banking, e-learning…). Off course, due to
using various tools and diverse amounts of time, many technologically different
solutions, for a web “break through“ appeared. The results are: enormous amo-
unt of knowledge on the Internet and everywhere else, but shortage of efficient
tools to access that data. Portals help its users to find and use this information,
which they need in the given context. Since the circumstances change, while the
user moves in space, prefix e changes to m (mobile: m-banking, m-business...), and
then to p (pervasive). However, the basic feature of a number of portals stays that
they show user just what he/she has explicitly requested. Still, a user very often
during the task execution needs much more than he is actually able to formulate.
Thus, the recommendation facility in the portal gains its significance. It provides
the user with the chance to see the world from somebody else’s point of view.

When the first prototype of the ETH World Portal framework was imple-
mented, there was no other portal solution, which could support the basic per-
sonalization condition, complete separation of the programming logic and the
application layout. The trends in the development of web systems, owing to ac-
knowledgement of XML for standard data transfer format and the fact that Java
is secure programming platform, as well to W3C activities, lead to Java/XML
frameworks (stable .NET appeared a bit later). Current state on the market shows
that the choice was justified. At the moment there are lots of commercial de-
ployment frameworks, which help authors in creating web applications
(iViewStudio …). Some of them appeared even before the work on this thesis
started. Having in mind their features, for example price, the decision when start-
ing this thesis was to work with standards. Hence, the JSP Taglib technology is
used. Having in mind that, at that specific point in time, still no complete portal
solution existed (SAPPortal appeared in the fourth quarter of 2001); the easiest
thing to do was extending the ETHWorld Portal prototype. Since the develop-
ment framework does not exist, application development is done manually,
which can be a bit tricky. However, each of the developed tags implements one
functionality; hence their utilization is completely intuitive. As a whole, the sys-
tem is pretty much unscalable due to DOM utilization for the base model. If this
characteristic is considered, it is much more convenient to use Cocoon/sunSpot
combination (even though XSP was not accepted by W3C as a standard). As far
as I know, at the moment there is no other “free“ recommendation module, so
that advisor can finish a part of the job. In order to achieve the possibilities of
commercial modules, like NetPerceptions (Amazon.com) is, a lot of work is re-
quired, including the implementation of other data mining techniques. But it goes
out of the boundaries of this thesis, which only wanted to prove that all this was
possible to do.

181

APPENDIX A
SAX Filter and SAX XML Generator

SimpleSAXFilter.java
import org.xml.sax.helpers.XMLFilterImpl;
import org.xml.sax.XMLReader;
import org.xml.sax.SAXException;
import org.xml.sax.Attributes;
import sax.helpers.AttributesImpl;
import org.xml.sax.helpers.DefaultHandler;
public class SimpleSAXFilter extends XMLFilterImpl{
public SimpleSAXFilter (){}
public SimpleSAXFilter (XMLReader parent){

super(parent);
}
// Filters start-element events for dbconnection element
public void startElement (String uri, String localName,String qName, Attributes atts)

throws SAXException {
boolean filter=false;
if (qName.equals("dbconnection")) {

super.startElement(uri, localName, qName, null);
int len = atts.getLength();
for (int i = 0; i < len; i++) {
super.startElement(atts.getURI(i), atts.getLocalName(i), atts.getQName(i),
null);
super.ignorableWhitespace(atts.getValue(i).toCharArray(),0,
atts.getValue(i).length());
super.endElement(atts.getURI(i), atts.getLocalName(i), atts.getQName(i));
}
filter=true;

}
if (!filter) super.startElement(uri, localName, qName, atts);

}
//Filters end-element events for dbconnection element
public void endElement (String uri, String localName, String qName)

throws SAXException{
if (qName.equals("dbconnection")) {}
super.endElement(uri, localName, qName);

}
}

This filter is used by the class SAX2Writer to convert all the attributes of the <dbconnec-
tion/> element to its child elements.

182

SAX2Writer.java
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import sax.helpers.AttributesImpl;
import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.DefaultHandler;
/**Example SAX2 writer. This example illustrates how to register
 * SAX2 ContentHandler that receives messages from SAXParser and
 * prints document which is parsed.*/
public class SAX2Writer extends DefaultHandler {
// constants
private static final String
DEFAULT_PARSER_NAME = "org.apache.xerces.parsers.SAXParser";
private static boolean setValidation= false; //defaults
private static boolean setNameSpaces= true;
private static boolean setSchemaSupport = true;
protected PrintWriter out;
protected boolean canonical;
// Default constructor
public SAX2Writer(boolean canonical)

throws UnsupportedEncodingException {
this(null, canonical);

}
protected SAX2Writer(String encoding, boolean canonical)

throws UnsupportedEncodingException {
if (encoding == null) {
encoding = "UTF8";
}
out = new PrintWriter(new OutputStreamWriter(System.out, encoding));
this.canonical = canonical;

}
// prints the output of SAX messsages
public static void print(String parserName, String uri, boolean canonical)
{

try {
DefaultHandler handler = new SAX2Writer(canonical);
XMLReader parser = new SimpleSAXFilter(
(XMLReader)Class.forName(parserName).newInstance());
parser.setContentHandler(handler);
parser.setErrorHandler(handler);
parser.parse(uri);

}catch (Exception e) {
e.printStackTrace(System.err);

}
}
// Processing instruction.
public void processingInstruction(String target, String data) {

out.print("<?");
out.print(target);
if (data != null && data.length() > 0) {

out.print(' ');
out.print(data);

}
out.print("?>");
out.flush();

}

183

SAX2Writer.java (continued)
// Start document.
public void startDocument() {

if (!canonical) {
out.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
out.flush();

}
}
// Start element.
public void startElement(String uri, String local,
String raw,Attributes attrs) {

out.print('<');
out.print(raw);
if (attrs != null) {

attrs = sortAttributes(attrs);
int len = attrs.getLength();
for (int i = 0; i < len; i++) {

out.print(' ');
out.print(attrs.getQName(i));
out.print("=\"");
out.print(normalize(attrs.getValue(i)));
out.print('"');

}
}
out.print('>');
out.flush();

} // startElement(String,String,String,Attributes)
// Characters.
public void characters(char ch[], int start, int length) {

out.print(normalize(new String(ch, start, length)));
out.flush();

}
// Ignorable whitespace.
public void ignorableWhitespace(char ch[], int start, int length) {

characters(ch, start, length);
out.flush();

}
// End element.
public void endElement(String uri, String local, String raw) {

out.print("</");
out.print(raw);
out.print('>');
out.flush();

}
// ErrorHandler metods
// Warning.
public void warning(SAXParseException ex) {

System.err.println("[Warning] "+getLocationString(ex)+": "+
ex.getMessage());

}
// Error.
public void error(SAXParseException ex) {

System.err.println("[Error] "+getLocationString(ex)+": "+
ex.getMessage());

}
// Fatal error.
public void fatalError(SAXParseException ex) throws SAXException {

System.err.println(
"[Fatal Error] "+getLocationString(ex)+": "+ex.getMessage());
throw ex;

}

184

SAX2Writer.java (continued)
// Returns location of String.
private String getLocationString(SAXParseException ex) {

StringBuffer str = new StringBuffer();
String systemId = ex.getSystemId();
if (systemId != null) {

int index = systemId.lastIndexOf('/');
if (index != -1) systemId = systemId.substring(index + 1);
str.append(systemId);

}
str.append(':');str.append(ex.getLineNumber());
str.append(':');str.append(ex.getColumnNumber());
return str.toString();

}
// Normalizes string.
protected String normalize(String s) {

StringBuffer str = new StringBuffer();
int len = (s != null) ? s.length() : 0;
for (int i = 0; i < len; i++) {
char ch = s.charAt(i);
switch (ch) {
case '<': { str.append("<"); break;}
case '>': { str.append(">"); break;}
case '&': { str.append("&"); break;}
case '"': { str.append("""); break;}
case '\r':
case '\n': {
if (canonical) {

str.append("&#");
str.append(Integer.toString(ch));
str.append(';');
break;

}
}
default: {str.append(ch);}

}
}
return str.toString();

}
// Returns sorted list of attributes.
protected Attributes sortAttributes(Attributes attrs) {

AttributesImpl attributes = new AttributesImpl();
int len = (attrs != null)?attrs.getLength():0;
for (int i = 0; i < len; i++) {

String name = attrs.getQName(i);
int count = attributes.getLength();
int j = 0;
while (j < count) {
if (name.compareTo(attributes.getQName(j)) < 0) {

break;
}
j++;
}
attributes.insertAttributeAt(j, name,

 attrs.getType(i), attrs.getValue(i));
}
return attributes;

}
/** Main program entry point. */
public static void main(String argv[]) {

if (argv.length == 0) { System.exit(1);}
boolean canonical = false;
String parserName = DEFAULT_PARSER_NAME;
print(parserName, argv[0], canonical);

}

185

APPENDIX B
XML Scheme for dynamically generated XML

WeekView.XSD
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:db=" http://www.vis.ethz.ch/~kai/" elementFormDefault="qualified">

<xsd:element name="Agenda">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="WorkDays"/>
<xsd:element ref="TimeAgenda" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="WorkDays">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Day" type="DayType" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="DayType">
<xsd:complexContent>
<xsd:extension base="DayName">
<xsd:attribute name="maxevents">

<xsd:simpleType>
<xsd:restriction base="xsd:int">

<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="9"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name="date" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="DayName" type="db:dayname"/>
<xsd:element name="TimeAgenda">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="beginTime" type="xsd:int"/>
<xsd:element ref="DayEvents" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="DayEvents">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="TBEvent" maxOccurs="unbounded"/>

186

WeekView.XSD(continued)
</xsd:sequence>
<xsd:attribute name="day" type="DayName"/>

<xsd:attribute name="date" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="TBEvent">
<xsd:complexType>

<xsd:attribute name="color" ref="xsd:color"/>
<xsd:attribute name="type" type="db:type" use="optional"/>
<xsd:attribute name="room" type="xsd:string" use="optional"/>
<xsd:attribute name="duration">
<xsd:simpleType>

<xsd:restriction base="xsd:int">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="9"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="colspan" type="xsd:int" use="optional" value="1"/>
<xsd:sequence>

<xsd:element ref="ltype" use="optional"/>
<xsd:element name="title" type="xsd:string"/>
<xsd:element ref="references"/>
<xsd:element ref="people"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="references">
<xsd:sequence>

<xsd:element ref="link" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:element>
<xsd:element name="link">
<xsd:simpleType>

<xsd:extension base="xsd:anyURI" >
<xsd:attribute name="type" type="linkType" use="optional"/>

</xsd:extension>
</xsd:simpleType>
</xsd:element>
<xsd:simpleType name="linkType">

<xsd:enumeration value="a"/>
<xsd:enumeration value="r"/>

</xsd:simpleType>
<xsd:element name="people">
<xsd:sequence>
<xsd:element ref="EPerson" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:element>
<xsd:element name="EPerson">
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="homepage" type="xsd:anyURI"/>

</xsd:sequence>
</xsd:element>

</xsd:schema>

187

APPENDIX C
Code for xJSP application ChooseLectures

ChooseLectures.xjsp

<ChooseLectures xmlns:xsi = "http://www.w3.org/2000/10/XMLSchema-instance">
<%@ taglib uri="http://jakarta.apache.org/taglibs/dbtags" prefix="sql" %>
<%@ taglib uri="http://jakarta.apache.org/taglibs/utility" prefix="util"%>
<%@ taglib uri='agenda' prefix='hermione' %>
<%@page extends="portal.framework.PortalJspPage" %>
<%@page import="portal.personalization.*, portal.framework.*, java.util.*,
 java.sql.ResultSet"%>
<%@page import="portal.taglib.organizer.*" %>

<hermione:EventList userID="<%= userID %>" listOfEvents="evList" />

<!--from list of all events shown extracts those of type Lecture-->
<hermione:filter type="select" key="type" value="Lecture" result="Lattended">

<hermione:source>evList</hermione:source>
</hermione:filter>

<!-- then finds out all distinct Courses these Lectures belong to-->
<hermione:filter type="distinct" key="CourseID" result="chosen">

<hermione:source>Lattended</hermione:source>
</hermione:filter>

<!-- for particualar student discovers all courses available to assign to-->
<hermione:customEventList id="cel" userID="<%= userID %>" type="Course"
 listOfEvents="available" >

<sql:query>
<%@ include file="available.sql" %>

</sql:query>
<sql:execute>

<sql:setColumn position="1"><%= userID %></sql:setColumn>
<sql:setColumn position="2"><%= userID %></sql:setColumn>

</sql:execute>
</hermione:customEventList>

<!-- and then from all courses from which student could choose takes out ones
(s)he's chosen already -->
<hermione:filter type="difference" key="CourseID" result="choosable">

<hermione:source>available</hermione:source>
<hermione:source>chosen</hermione:source>

</hermione:filter>

<hermione:customEventList id="ud" userID="<%= userID %>" type="UserData"
 listOfEvents="uData" >

<sql:query>
SELECT * FROM Student WHERE StudentID = ?

</sql:query>
<sql:execute>

<sql:setColumn position="1"><%= userID %></sql:setColumn>
</sql:execute>

</hermione:customEventList>

188

ChooseLectures.xjsp (continued)
<chooseList>
<hermione:outputXML src="choosable"/>

<size><%= ((Vector)pageContext.findAttribute("choosable")).size() %></size>
</chooseList>
<% String[] values = ((PortalRequest)request).getParameterValues("select");
%><util:If predicate="<%= values != null %>">
<% //if select parameter of the request is not null (which means that it is called
from addLecture then

//all chosen lectures are added to the database (stmt4)
int currentSemester=0;
values = ((PortalRequest)request).getParameterValues("select");
StringBuffer set=new StringBuffer();
set.append("('");set.append(values[0]); set.append("'");
for(int i=1;i<values.length; i++) set.append(",'"+values[i]+"'");
set.append(")");

%>
<!-- bug, luckily not mine but Java's setArray is not implemented so it has
to be done by string concatenation -->
<hermione:customEventList id="lel" userID="<%= userID %>" type="Lecture"
listOfEvents="chosen2" >

<sql:query>
<%@ include file="chosen2.sql" %><%= set%>
</sql:query>
<sql:execute/>

</hermione:customEventList>
<hermione:filter type="add" >

<hermione:source>evList</hermione:source>
<hermione:source>chosen2</hermione:source>

</hermione:filter>
<%

Vector uData= (Vector)pageContext.findAttribute("uData");
Vector chosen2= (Vector)pageContext.findAttribute("chosen2");
PropertyInterface user = (PropertyInterface)uData.elementAt(0);
currentSemester = Integer.parseInt(user.get("currentSemester").toString());

%>
<sql:connection id="conn2">
<sql:url>

jdbc:microsoft:sqlserver://GORILLAZ:1433;Database=TryCourseScheduler;user=sunpr
ess;password=sunpress;SelectMethod=cursor;
</sql:url>

<sql:driver>com.microsoft.jdbc.sqlserver.SQLServerDriver</sql:driver>
</sql:connection>
<sql:preparedStatement id="stmt4" conn="conn2">
<sql:query>

insert into isAssignedTo (StudentID, CourseEventID, duringSemester) values
('<sql:escapeSql><%= userID %></sql:escapeSql>',?,<%= currentSemester%>)

</sql:query>
<util:for varName="i" begin="0" iterations="<%=chosen2.size() %>">
<sql:execute ignoreErrors="true">
<sql:setColumn position="1">

<%= ((PropertyInterface)chosen2.elementAt(i.intValue())).get("OID")%>
</sql:setColumn>
</sql:execute>

</util:for>
</sql:preparedStatement>
<sql:closeConnection conn="conn2"/>
<%response.sendRedirect("PortalAgenda.xjsp?appName=ChooseLectures");%>
</util:If>

</ChooseLectures>

189

APPENDIX D
Extracts from the JavaDoc 1.3 generated documentation

Packages

portal.taglib

portal.taglib.advisor.ado

portal.taglib.advisor.clustering

portal.taglib.organizer

Class Hierarchy

o class java.lang.Object
o class portal.taglib.organizer.DateBean

o class portal.taglib.DBconnPortalImpl
o class java.util.Dictionary

o class java.util.Hashtable (implements java.lang.Cloneable, java.util.Map,
java.io.Serializable)

o class portal.taglib.organizer.Event (implements por-
tal.taglib.organizer.PropertyInterface)

o class portal.taglib.organizer.Events
o class portal.taglib.organizer.FreeEvents
o class portal.taglib.organizer.LectureEvents

o class com.jacob.com.JacobObject
o class com.jacob.com.Dispatch

o class portal.taglib.advisor.ado.Command
o class portal.taglib.advisor.ado.Connection
o class portal.taglib.advisor.ado.Field
o class portal.taglib.advisor.ado.Fields
o class portal.taglib.advisor.ado.Recordset

o class javax.servlet.jsp.tagext.TagExtraInfo
o class portal.taglib.organizer.CustomEventListTEI

o class javax.servlet.jsp.tagext.TagSupport (implements
javax.servlet.jsp.tagext.IterationTag, java.io.Serializable)

o class portal.taglib.advisor.clustering.BaseQueryTag
o class portal.taglib.advisor.clustering.GetColumnsTag
o class portal.taglib.advisor.clustering.QueryTag

o class javax.servlet.jsp.tagext.BodyTagSupport (implements
javax.servlet.jsp.tagext.BodyTag)

o class portal.taglib.advisor.clustering.CaseColumnTag
o class portal.taglib.advisor.clustering.CaseTableTag
o class portal.taglib.advisor.clustering.ConnectTag
o class portal.taglib.advisor.clustering.CreateClusterTag

190

o class portal.taglib.advisor.clustering.RetrainModelTag
o class portal.taglib.advisor.clustering.DropModelTag
o class portal.taglib.organizer.FilterTag
o class portal.taglib.advisor.clustering.InputColumnTag
o class portal.taglib.advisor.clustering.InputTableTag
o class portal.taglib.ListTag
o class

org.apache.taglibs.dbtags.preparedstatement.PreparedStatementIm
plTag (implements
org.apache.taglibs.dbtags.statement.StatementTag)

o class portal.taglib.organizer.CustomEventListTag
o class portal.taglib.advisor.clustering.RowsetDataTag
o class portal.taglib.organizer.SourceTag

o class portal.taglib.organizer.XMLSourceTag
o class portal.taglib.organizer.EventListTag
o class portal.taglib.IncludeApplicationTag
o class portal.taglib.organizer.OutputXMLTag
o class portal.taglib.UserGetParameterTag
o class portal.taglib.UserSetParameterTag
o class portal.taglib.organizer.WeekViewTag

o class portal.taglib.organizer.TodayBean

Interface Hierarchy

o interface portal.taglib.advisor.ado.CommandTypeEnum
o interface portal.taglib.organizer.PropertyInterface

portal.taglib.advisor.ado
Interface CommandTypeEnum

public interface CommandTypeEnum

This interface stores all the possible values for the property CommandType. The CommandType
property is used to set or return the type of a Command object.

Field Detail

adCmdUnspecified
public static final int adCmdUnspecified

This value indicates that the CommandType property has been unspecified.

adCmdUnknown
public static final int adCmdUnknown

This value indicates that the type of command in a CommandText property is not
known. This is the default value.

adCmdText
public static final int adCmdText

This value evaluates the CommandText property as a textual definition of a command
command or stored procedure call.

adCmdTable
public static final int adCmdTable

191

This value evaluates the CommandText property as a table name.

adCmdStoredProc
public static final int adCmdStoredProc

This value evaluates the CommandText property as a stored procedure.

adCmdFile
public static final int adCmdFile

Evaluates CommandText as the file name of a persistently stored Recordset. Used
with Recordset. Open or Requery only.

adCmdTableDirect
public static final int adCmdTableDirect

Evaluates CommandText as a table name whose columns are all returned. Used with
Recordset.Open or Requery only. To use the Seek method, the Recordset must be
opened with adCmdTableDirect.

adExecuteNoRecords
public static final int adExecuteNoRecords

Indicates that the command text is a command or stored procedure that does not return
rows (for example, a command that only inserts data). If any rows are retrieved, they are
discarded and not returned. adExecuteNoRecords can only be passed as an optional pa-
rameter to the Command or Connection Execute method.

portal.taglib.advisor.clustering Class GetColumnsTag
java.lang.Object
 |
 +-javax.servlet.jsp.tagext.TagSupport
 |
 +-portal.taglib.advisor.clustering.BaseQueryTag
 |
 +-portal.taglib.advisor.clustering.GetColumnsTag

All Implemented Interfaces: javax.servlet.jsp.tagext.IterationTag,
java.io.Serializable, javax.servlet.jsp.tagext.Tag

public class GetColumnsTag extends BaseQueryTag

JSP tag getColumns. This tag is used for creation of the new mining model with the specified
model name and of the specified type. The default type of data mining is clustering. JSP Tag Lib
Descriptor :

 <name>create</name>
 <tagclass>portal.taglib.advisor.clustering.CreateClusterTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>A tag that creates new data mining model.</info>
 <attribute>
 <name>model</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>queryRS</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

192

 <attribute>
 <name>attribute</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

Fields inherited from class portal.taglib.advisor.clustering.BaseQueryTag

caseIdColumn, caseTable, connectStr, inputIdColumn, inputTable, model,
rowsetData, tableSource

Constructor Summary

GetColumnsTag()

Methods inherited from class portal.taglib.advisor.clustering.BaseQueryTag

getDistinctValues, getModelInfo, getRS, setModel

Method Detail

setAttribute
public void setAttribute(java.lang.String attribute)

Sets the name of the property of a case that is requested.

Parameters:

attribute - the name of the requested case property.

setCaseID
public void setCaseID(java.lang.String caseID)

Sets the id for the case in question.

Parameters:

caseID - the identifier of the case.

setQueryRS
public void setQueryRS(java.lang.String queryRS)

Sets the name of the Vector object to store the requested data.

Parameters:

queryRS - the name of the Vector object.

portal.taglib.advisor.ado Class Recordset
java.lang.Object
 |
 +-com.jacob.com.JacobObject
 |
 +-com.jacob.com.Dispatch
 |
 +-portal.taglib.advisor.ado.Recordset

public class Recordset extends com.jacob.com.Dispatch

193

Represents the entire set of records from a base table or the results of an executed command.
At any time, the Recordset object refers to only a single record within the set as the current re-
cord.

Constructor Summary

Recordset() Class constructor.

Recordset(com.jacob.com.Dispatch d) This constructor is used instead of a case operation to turn
a Dispatch object into a wider object - it must exist in every wrapper class whose instances may be returned
from method calls wrapped in VT_DISPATCH Variants.

Method Detail

getBOF
public boolean getBOF()

BOF - Indicates that the current record position is before the first record in a Recordset object.

setCursorType
public void setCursorType(int pl)

There are four different cursor types defined in ADO:

• Dynamic cursor (adOpenDynamic) - allows viewing additions, changes, and dele-
tions by other users; allows all types of movement through the Recordset that does-
n't rely on bookmarks; and allows bookmarks if the provider supports them.

• Keyset cursor (adOpenKeyset) - behaves like a dynamic cursor, except that it pre-
vents you from seeing records that other users add, and prevents access to records
that other users delete. Data changes by other users will still be visible. It always
supports bookmarks and therefore allows all types of movement through the Re-
cordset.

• Static cursor (adOpenStatic)- provides a static copy of a set of records for you to
use to find data or generate reports; always allows bookmarks and therefore allows
all types of movement through the Recordset. Additions, changes, or deletions by
other users will not be visible. This is the only type of cursor allowed when you open
a client-side Recordset object.

• Forward-only cursor (adOpenForwardOnly)- allows you to only scroll forward
through the Recordset.Additions, changes, or deletions by other users will not be
visible. This improves performance in situations where you need to make only a sin-
gle pass through a Recordset. Set the CursorType property prior to opening the Re-
cordset to choose the cursor type, or pass a CursorType argument with the Open
method.

Parameters:
pl - defines the type of the cursor. Possible values are:
 adOpenDynamic 2
 adOpenForwardOnly 0
 adOpenKeyset 1
 adOpenStatic 3
 adOpenUnspecified -1

getEOF
public boolean getEOF()

EOF - Indicates that the current record position is after the last record in a Recordset
object.

getFields
public Fields getFields()

194

The Fields collection is the default member of the Recordset object.

Move
public void Move(int NumRecords, com.jacob.com.Variant Start)

It is possible to use the MoveFirst, MoveLast, MoveNext, and MovePrevious methods, the
Move method, and the AbsolutePosition, AbsolutePage, and Filter properties to reposition
the current record, assuming the provider supports the relevant functionality.

Open
public void Open(com.jacob.com.Variant Source,
com.jacob.com.Variant ActiveConnection, int CursorType, int LockType,
int Options)

Recordset objects can be created independently of a previously defined Connection
object by passing a connection string with the Open method. ADO still creates a Connection
object, but it doesn't assign that object to an object variable.

Update
public void Update(com.jacob.com.Variant Fields,
com.jacob.com.Variant Values)

Recordset objects can support two types of updating: immediate and batched. In im-
mediate updating, all changes to data are written immediately to the underlying data
source once you call the Update method.

UpdateBatch
public void UpdateBatch(int AffectRecords)

If a provider supports batch updating, it is possible to have the provider cache changes
to more than one record and then transmit them in a single call to the database with the
UpdateBatch method.

195

7 Literature

[ADO] http://msdn.microsoft.com/library/default.asp?url=/library/en-us/his/thorref4_6ndu.asp

[AHL99] Leland Ahlbeck and Don Willits, Pooling in the Microsoft Data Access
Components, Microsoft Corporation, May 1999,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmdac/html/pooling2.asp

[APACHE] http://www.apache.org

[ARGA95] R. Argawal, R. Srikant, Mining sequential patterns, Proceedings of
the 11th International Conference on Data Engineering, pp.3-14, Zurich,
Switzrland, September 1995

[ASP] http://www.aspin.com/

[BAL97] Marko Balabanovic, Yoav Shoham, Fab : Content-based, Collaborative
Recommendation, Communications of the ACM, March 1997/Vol.40, No.3

[BAL97a] Marko Balabanovic, An adaptive web page recommendation service. In
Proceedings of the 1st International Conference on Autonomous Agents, Marina
del Rey, California, February 1997

[CLAY01] Mark Claypool, Phong Le, Makoto Waseda, and David Brown, Im-
plicit Interest Indicators, IUI’01, January 2001

[CH00] http://simulant.ethz.ch/Chariot/, 2000

[CHAN01] George Chang, Marcus J. Healey (Editor), James A. M. McHugh,
Jason T. L. Wang, Mining the World Wide Web - An Information Search Approach ,
The Kluwer International Series on Information Retrieval, Volume 10) Kluwer
Academic Publishers, June 2001

[CHUN00] Don Chun, Using Portals to Enhance Your Self-Service Solutions,
Yvette Cameron, IHRIM Boston 2000 Spring Conference, June 2000

[CO02] http://cocoon.apache.org

196

[COOL99] R. Cooley, B. Mobasher, and J. Srivastava, Data preparation for min-
ing World Wide Web browsing patterns. Journal of Knowledge and Information Sys-
tems, (1) 1, 1999

[DBTAG] Jakarta Project: DBTags Tag library, http://jakarta.apache.org/taglibs/doc/dbtags-
doc

[DG00] The Delphi Group, Portal Design Primer: 68 Questions for Portal Plan-
ners, September 2000., http://www.delphigroup.com

[DOM] http://www.w3.org/DOM/

[ETH00] Conceptual Competition ETH World - Virtual and Physical Presence,
2000

[GAN00] John Ganci, Michael Adams,Mark Endei, Maria Miccolis, Erly
Serrano, WebSphere Personalization Solutions Guide, IBM Redbook, December 2000

[GEAR01] David Geary, Advanced JavaServer Pages, Sun Microsystems Press,
Prentice Hall Title, April 2001

[GG01] Gartner's Electronic Workplace & Intranets Research Note M-14-0730,
http://www.gartner.com/webletter/sybase/october/article1.html, 23 July 2001

[GG02] G. Phifer, R. Valdes, D. Gootzit, Markets, Gartner Research Note, M-
16-3524, 1 May 2002

[GLE01] Bernard W. Gleason, Institutional Information Portal Key to Web Appli-
cation Integration, January 26, 2001

[GNAG01] Steven Gnagni, PORTAL QUEST, University Bussines Magazine,
May 2001, http://www.universitybusiness.com/0105/feature.html

[GOLD92] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry,
Using collaborative filtering to weave an information tapestry. Communications of the
ACM, 35(12):61–70, December 1992

[GRIF00] Cary Griffith, Vortals cut through Jabberwocky,
http://www.computeruser.com/articles/1904,5,15,1,0331,00.html, March 2000

[GRU87] J. Grudin, Social Evaluation of the User Interface : Who Does the Work
and Who Gets the Benefit? Proceedings of IFIP INTERACT’87 : Human-Computer
Interaction, 1987, pp.805-811

[HALL00] Marty Hall, Custom Servlets and Java Server Pages, Sun Microsys-
tems Press, Prentice Hall Title, August 2000

197

[HAN00] Jiawei Han and Micheline Kamber, Data Mining: Concepts and Tech-
niques, Morgan Kaufmann Publishers, August 2000

[HAN97] E-H Han, G. Karypis,V. Kumar and B. Mobasher, Clustering based on
association rule hypergraphs. In Proccedings of SIGMOD’97 Workshop on Research
Issues in Data Mining and Knowledge Discovery (DMKD’97), May 1997

[HER01] Jonathn L. Herlocker, Joseph A. Konstan, Content-Independent Task
Focused Recommendation, IEEE Internet Computing, pp. 40-47, November-
December 2001, http://computer.org/internet

[HILL94] W.C. Hill, J.D. Hollan, History-Enriched Digital Objects: Prototypes and
Policy Issues, The Information Society, 10 pp.139-145, 1994

[HUA98] Z. Huang, Extensions to the k-means algorithm for clustering large data
sets. pp. 283-304, Data mining and Knowlegde Discovery(2), 1998

[INST00] Keith Instone, Information Architecture And Personalization, http://argus-
acia.com/

[J2EE] Java 2 Platform, Enterprise Edition—Downloads and Specifications,
http://java.sun.com/j2ee/download.html

[JACOB] Dan Adler, The JACOB Project: A Java-COM Bridge, September 2001,
http://dandler.com/jacob/The JACOB Project.htm

[JAUS01] Kai Jauslin, Framework for ETHWorld Portal, March 2001

[JAXP] JAXP 1.1 JSR63, http://java.sun.com/aboutJava/communityprocess/review.html

[JaSIG] JA-SIG uPortal, http://mis105.mis.udel.edu/ja-sig/uportal/

[JNI] http://java.sun.com/products/jdk/1.2/docs/guide/jni/

[JOA97] Thorsten Joachims, Dayne Freitag, and Tom Mitchell, WebWatcher : A
Tour Guide for the World Wide Web, Proceedings of the International Joint Confer-
ence in AI (IJCAI97), August 1997

[JSP] JavaServer Pages™ Specification Version 1.2 - Proposed Final Draft
(PFD), October 26, 2000

[JSTL] JSP 1.2 Standard Tag Library (JSTL). http://jakarta.apache.org/taglibs/doc/standard-
doc/intro.html

[JSWP01] Java Servlet Technology White Paper,
http://java.sun.com/products/servlet/whitepaper.html

[JTL] http://jakarta.apache.org/builds/jakarta-taglibs/nightly/projects/doc

198

[KAU97] Henry Kautz, Bart Selman and Mehul Shah, ReferralWeb : Combining
Social Networks and Collaborative Filtering, pp. 63-65, Communications of the ACM,
March 1997/Vol.40, No.3

[KOB01] Alfred Kobsa, Generic User Modeling Systems, User Modeling and User-
Adapted Interaction 11, pp.49-63, Kluwer Academic Publishers, 2001

[KOE01] Alfred Kobsa, Juergen Koenemann, Wolfgang Pohl, Personalized Hy-
permedia Presentation Techniques for Improving Online Customer Relationships, The
Knowledge Engineering Review 16(2), pp. 111-155 , Cambridge University Press,
2001

[KONS97] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L.
Herlocker, Lee R. Gordon, and John Riedl, GroupLens : Applying Collaborative Fil-
tering to Usenet news, pp. 77-87, Communications of the ACM, March 1997/Vol.40,
No.3

[KOUL99] Thomas M. Koulopoulos, Corporate Portals: Make Knowledge Accessi-
ble to All, http://www.informationweek.com/731/31erall.htm

[LDAP02] OpenLDAP 2.1 Administrator’s Guide : Intorduction to OpenLDAP Di-
rectory Services, http://www.openldap.org/devewl/admin/intro.html

[LEV00] M. Levene, The Navigation Problem in the World-Wide-Web, 2000

[MCL00] Brett McLaughlin, Mike Loukides, Java and XML, O'Reilly & Associ-
ates; ISBN: 0596000162; June 2000

[MIL01] http://www.dla.mil/jgwi/definition_for_portal.htm

[MLA96] Dunja Mladenic, Personal WebWatcher : Design and Implementation,
Technical Report IJS -DP-7472, Department of Intelligent Systems, J.Stefan Insti-
tute, Slovenia, 1996

[MOB00] Bamshad Mobasher, Robert Cooley, Jaideep Srivastava, Automatic
Personalization Based on Web Usage Mining, Communications of the ACM, August
2000/Vol.43, No.8, pp.142-151

[MOR99] David Morrison, Martin Buckley and Steve Cappo, Building a Portal
with Lotus Domino R5, IBM Red Book, October 1999

[MUL00] Maurice D. Mulvenna, Sarabjot S. Anand, Alex G. Buechner, Person-
alization on the Net using Web Mining , pp.123-125, Communications of the ACM,
August 2000/Vol.43, No.8

[NIEL98] Jakob Nielsen, Personalization is Over-Rated, Alertbox for Oct. 1998,
Personalization, http://www.useit.com/alertbox/981004.html

199

[OARD97] Douglas W. Oard, The State of the Art in Text Filtering. User Model-
ing and User-Adapted Interaction, pp. 141-178., http://www.glue.umd.edu/~oard/ research.html

[OARD98] Douglas W. Oard and Jinmook Kim, Implicit Feedback for Recom-
mender Systems, Proceedings of AAAI Workshop on Recommender Systems, July
1998

[OCONN99] Mark Connor and Jon Herlocker, Clustering items for collaborative
filtering. ACM SIGIR ’99

[OLEDB] OLE DB for Data Mining Specification, Version 1.0, Microsoft Cor-
poration, July 2000

[PMML] http://www.dmg.org/pmmlspecs_v2/pmml_v2_0.html

[PAZZ96] M. Pazzani, J. Muramatsu and D. Billsus, Syskill & Webert: Identify-
ing interesting web sites. In Proccedings of the 13 th National Conference on Artifi-
cial Intelligence, 1996

[PORT80] M. Porter, An algorithm for suffix stripping Program 14(3) pp.130-137,
1980

[PRAC] http://www.practicalportals.com

[RAS02] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K. Lam,
Sean M. McNee, Joseph A. Konstan, John Riedl, Getting to Know You : Learning
New User Prefrences in Recommender Systems, IUI’02, San Francisco, California,
January 2002

[RES97] Paul Resnick and Hal R. Varian, Recommender Systems, pp.56-58
Communications of the ACM, March 1997/Vol.40, No.3

[REG] http://jakarta.apache.org/regexp/

[RFC] D. Kristol, L.Montulli, HTTP State Managenment Mechanism,
http://www.ietf.org/rfc.rfc2109.txt

[ROC71] J. Jr. Rocchio, Relevance feedback in information retrieval. In The Smart
System Experiments in Automatic Document Processing pp.313-323, Prentice
Hall Inc, 1971

[RUCK97] James Ruckner and Marcos Polanco, Siteseer : Personalized Naviga-
tion for the Web , pp.73-75, Communications of the ACM, March 1997/Vol.40, No.3

[SAP01] SAP White Paper: mySAP technology Portal Infrastructure : People-
Centric Collaboration, 2001

[SAX] SAX 2.0 Specification, http://www.megginson.com/SAX/

200

[SAL83] G. Salton and M. J. McGill, An Introduction to Modern Information Re-
trieval. McGraw-Hill, 1983

[SAR01] Badrul Sarwar, George Karypis, Joseph Konstan and John Reidl,
Item-Based Collaborative Filtering Recommendation, WWW10, May 2001

[SCHA01] Thomas Schaeck, IBM Software Group, WebSphere Portal Server and
Web Services Whitepaper, 2001

[SCHAR95] Upendra Schardanand, Pattie Maes, Social Information Filtering:
Algorithms for Automating ‘Word of Mouth’, CHI95 Proceedings

[WDAV] http://www.webdav.org/

[XALAN] http://xml.apache.org/xalan-j/overview.html

[XERCES] http://xml.apache.org/xalan-j/overview.html

[XSLT] XSLT Specification, http://www.w3c.org/XSLT

i

Contents

1 INTRODUCTION... 3
1.1 The actual situation... 3
1.2 ETH World Project.. 4
1.3 Personalization.. 6
1.4 Portal.. 7
1.5 Technology .. 8
1.6 The Goals... 9

2 PORTALS .. 11
2.1 Portal is... ... 11
2.2 vs. Home page ... 13
2.3 Portal types .. 13

2.3.1 Focus... 13
2.3.2 Corporate Portals ... 16

2.4 What makes a portal a portal.. 18
2.5 The Basic Portal Components .. 18

2.5.1 Presentation ... 19
2.5.2 Personalization.. 20
2.5.3 Collaboration... 20
2.5.4 Process... 21
2.5.5 Publishing and Distribution... 21
2.5.6 Search... 22
2.5.7 Categorization... 23
2.5.8 Integration.. 23
2.5.9 Learning Loop... 24
2.5.10 Portal Foundation Elements... 25

2.5.10.1 Security .. 25
2.5.10.2 Directory.. 26
2.5.10.3 Trusted Content.. 26

2.6 Elements of knowledge management.. 27
2.7 Benefits of the portal... 28

ii

3 PERSONALIZATION ...29
3.1 Personalized system..29

3.1.1 Information Architecture of a Personalized System30
3.1.1.1 User Data ...31
3.1.1.2 Usage Data ..31
3.1.1.3 Content...32
3.1.1.4 Personalization Rules and Environment Data..33
3.1.1.5 The Price of Personalization..33

I Explicit interest indicators..33
II Implicit interest indicators...34

3.1.2 Rule-based personalization...36
3.1.3 Customization..37
3.1.4 Recommendation..38

3.1.4.1 Content-based filtering...39
3.1.4.2 Clique-based filtering..40

3.2 Methods for detecting similarity ..41
3.2.1 Vector-space model..41

3.2.1.1 TFIDF ..42
3.2.2 Cosine distance..42
3.2.3 Euclidean and Manhattan distance ..42
3.2.4 Pearson correlation...43

3.3 Methods for Knowledge Discovery..43
3.3.1 Data Mining..43

3.3.1.1 Concept Description...44
3.3.1.2 Association Rule Discovery...45
3.3.1.3 Classification and Prediction ..45

I k-Nearest Neighbor...46
II Decision Trees ..46
III Bayesian Classification..47

3.3.1.4 Clustering (Segmentation)...49
I Partitioning ...50
II Hierarchical clustering..51
III Clustering based on the distribution density.................................51

3.3.1.5 Microsoft Clustering..51
3.3.2 Text mining...54

3.3.2.1 Association Rules..55
3.3.2.2 Trend Discovery..55
3.3.2.3 Event Detection..56

3.3.3 Web Mining..56
3.3.3.1 Web content mining...56
3.3.3.2 Web usage mining..56
3.3.3.3 Web structure mining..56
3.3.3.4 Data preparation for web mining..57

iii

3.4 Sample academic recommender systems... 58
3.4.1 WebWatcher .. 59

3.4.1.1 Learning from Previous Tours... 60
3.4.1.2 Learning from Hypertext Structure... 61
3.4.1.3 Recommendation of New Contents... 61
3.4.1.4 Personal WebWatcher (PWW)... 62

3.4.2 WebPersonalizer... 62
3.4.2.1 Off-line Process ... 62
3.4.2.2 On-line process.. 64

3.4.3 Fab... 64
3.4.3.1 Collection Agents... 65
3.4.3.2 central router.. 65
3.4.3.3 Selection Agents.. 65

3.4.4 MovieLens Matcher... 66
3.4.4.1 Interest ratings... 67
3.4.4.2 Interest recommender... 67
3.4.4.3 Task Specification... 67
3.4.4.4 Item Association Data... 68
3.4.4.5 Task-Focused Recommender ... 69
3.4.4.6 Task-Focused Recommendations ... 70

3.4.5 Review ... 70

4 PORTAL FRAMEWORK.. 71
4.1 Infostructure.. 71

4.1.1 Personalization.. 71
4.1.1.1 Sites and Sessions... 72
4.1.1.2 User groups.. 72
4.1.1.3 settings ... 73
4.1.1.4 Modularity.. 74

4.1.2 Dynamic representation .. 74
4.1.2.1 Intermediate Representation .. 74
4.1.2.2 Transformation.. 75
4.1.2.3 Separation of Concerns... 75

4.2 Functions and Architecture.. 76
4.2.1 Communication Level Architecture.. 76
4.2.2 Portal Application Server.. 77

4.2.2.1 Dataflow .. 77
4.2.3 Implementation .. 78

4.2.3.1 Servlets and Tomcat Servlet Container ... 79
I Servlets... 79
II Ways to Use Servlets.. 80
III Servlets and Framework.. 80
IV Servlet Container ... 80
V Servlet Lifecycle.. 81

iv

VI Security..82
VII Performance..83

4.2.3.2 Xerces­J 1.3...85
I DOM ..85
II SAX...86
III SAX vs. DOM..86

4.2.3.3 Xalan-j 2.0...87
4.2.3.4 JAXP 1.1 ..88
4.2.3.5 JSP 1.2 ..89
4.2.3.6 Jakarta Regexp ...89

I org.apache.regexp.RE..89
4.2.3.7 Packages ...90

I framework.Dispatcher...91
II session.Session Manager ...92
III session.Session..92
IV personalization.Personality..92
V personalization.PersonalityManager..92
VI framework.PortalRequest...92
VII framework.PortalResponse...93

4.2.3.8 Session Manager and Personalization..93
4.2.3.9 Security...93

4.2.4 Example dataflow...93
4.2.5 Database...95

4.2.5.1 Interface..95
4.2.5.2 Setup..96

4.3 Portal Configuration and Portal Application Development...............96
I Base ...96
II Transformers, Serializers...97
III Applications ...97
IV Styles...98
V Mapping ..98

4.3.1 Applications as Java classes ..98
4.3.1.1 Wrapper applications ... 100

4.3.2 JSP Applications... 100
4.3.2.1 Jasper.. 101
4.3.2.2 Requesting Java Server Page.. 101
4.3.2.3 Programming Logic .. 103

4.4 Extensions .. 103
4.4.1 Java Beans... 104
4.4.2 Tag Libraries.. 104

4.4.2.1 Tag Library Descriptor (TLD) .. 104
4.4.2.2 Tag Handler Class.. 106

I BodyContent.. 108
4.4.2.3 Nested Tags.. 108

v

4.4.2.4 DBTags Tag Library...109
I Tag <connection/>...109
II Tags <statement/> and <preparedStatement/>109
III Tag <resultSet/>..109

4.4.3 JDOM ...110
4.5 Cocoon..112
4.6 Commercial Portals..113

4.6.1 IBM WebSphere Portal...115
4.6.1.1 Portal Engine..116
4.6.1.2 Portlets ...117
4.6.1.3 Personalization..117
4.6.1.4 Web Services ..118

4.6.2 SAPPortal..118
4.6.2.1 Page Builder ...119
4.6.2.2 iView Server...119
4.6.2.3 Applications and legacy databases ..120

IV Unification..121
V Security..121
VI Personalization..122

4.6.2.4 Business Intelligence ...122
4.6.2.5 Unstructured information ...122
4.6.2.6 Web contenti i services ...123

4.6.3 UPortal...123
4.6.3.1 Presentation Assembly...123
4.6.3.2 Channels..124

4.6.4 Conclusions..126

5 IMPLEMENTATION...127
5.1 Introduction..127

I Concepts...128
II Technology..129
III Applications..130

5.2 System overview ..131
5.2.1 JACOB..132

5.2.1.1 com.jacob.com.Dispatch...135
5.2.1.2 com.jacob.com.Variant...136

5.2.2 OLE DB for Data Mining...137
5.2.2.1 Data Mining Model..137
5.2.2.2 CREATE MINING MODEL..139
5.2.2.3 SELECT ..140

I PREDICTION JOIN..141
II ON and condition in the JOIN operation....................................142

5.2.2.4 Shape ..143
5.2.2.5 Openrowset..143
5.2.2.6 DELETE, DROP ..144

vi

5.3 Advisor tag library... 144
5.3.1 advisor.Clustering... 146

5.3.1.1 CreateClustersTag.. 147
5.3.1.2 QueryTag.. 148

5.3.2 advisor.ado .. 151
5.3.2.1 Recordset... 151

5.4 Organizer tag library... 153
5.4.1 CustomEventListTag.. 154
5.4.2 OutputXMLTag.. 156
5.4.3 FilterTag.. 157
5.4.4 PropertyInterface, Event and Events .. 159

5.5 Interactive Timetable.. 160
5.5.1 The CourseScheduler Database.. 161
5.5.2 Data Mining Model ... 162
5.5.3 The InteractiveTimetable Application.. 164
5.5.4 The Portal Agenda Application .. 166

5.5.4.1 EventListTag.. 167
5.5.4.2 WeekViewTag... 169
5.5.4.3 AddEvent, RemoveEvent.. 173

5.5.5 The ChooseLectures Application ... 174
5.5.6 The Recommend Application.. 174

6 CONCLUSION .. 177
6.1 University Portals .. 177
6.2 Possible Improvements... 178
6.3 Utilization .. 179
6.4 Usability of the Developed Platform... 180

APPENDIX A SAX FILTER AND SAX XML GENERATOR.................. 181

APPENDIX B XML SCHEME FOR DYNAMICALLY GENERATED XML
 .. 185

APPENDIX C CODE FOR XJSP APPLICATION CHOOSELECTURES....
 ... 187

APPENDIX D EXTRACTS FROM THE JAVADOC 1.3 GENERATED
DOCUMENTATION.. 189

7 LITERATURE... 195

vii

Index of figures

Figure 2.1 Basic portal functions... 12
Figure 2.2 One horizontal portal - Excite.. 14
Figure 2.3 Architecture of a vertical portal... 15
Figure 2.4 An example of a vortal: KoreaLink.. 16
Figure 2.5 An example of a corporate portal (SAP community portal)................ 17
Figure 2.6 The architecture for one portal .. 19
Figure 2.7 Portal security schemes.. 25
Figure 3.1 Information architecture for personalized system 30
Figure 3.2Rule based personalization... 36
Figure 3.3 Example of a content based profile.. 42
Figure 3.4 A sample decision tree... 47
Figure 3.5 Simple example of a Bayesian belief network [HAN00] 49
Figure 3.6 A simplified display of few iterations of MC algorithm 52
Figure 3.7 Summary of preprocessing steps... 57
Figure 3.8 WebWatcher is an interface agent between the user and WWW........ 60
Figure 3.9 Example state space... 61
Figure 3.10 Architecture of web-usage based personalized system 63
Figure 3.11 Overview of the Fab architecture... 64
Figure 3.12 List of rated (a) and recommended movies (b).................................. 67
Figure 3.13 Task-focused recommender system architecture 68
Figure 3.14 Isolation of simultaneously rated items and similarity computation69
Figure 3.15 Data flow diagram ... 69
Figure 4.1 Identification scheme used in the prototype 72
Figure 4.2 Implemented group hierarchy... 73
Figure 4.3 Pyramid of contracts.. 75
Figure 4.4 The basic portal components ... 76
Figure 4.5 Building blocks of the portal application server.................................. 77
Figure 4.6 Functional scheme of the portal on the component level.................... 78
Figure 4.7 External Portal components... 79
Figure 4.8 Possible sources of servlets .. 82
Figure 4.9 Comparing two approaches to server extensions................................ 83
Figure 4.10 Comparison of three server extension approaches............................ 84
Figure 4.11 JAXP API and its utilization... 88
Figure 4.12 The portal package diagram .. 90

viii

Figure 4.13 Relational database diagram ..95
Figure 4.14 Accessing various data sources from JSP application...................... 103
Figure 4.15 One view on the ChooseColor.xjsp application......................... 108
Figure 4.16 Comparing class diagrams for DOM and JDOM 110
Figure 4.17 Cocoon and JSP... 112
Figure 4.18 Cocoon pipeline.. 113
Figure 4.19 Magic quadrants of portal producers... 114
Figure 4.20 WebSphere PortalServer architecture including web services and
remote portlets... 115
Figure 4.21 Web Sphere Portal Engine.. 116
Figure 4.22 Portlet look.. 117
Figure 4.23 Building blocks of mySAP technology... 119
Figure 4.24 Portal Server architecture... 120
Figure 4.25 Architecture of the unification server... 121
Figure 4.26 Information flow... 124
Figure 4.27 uPortal components.. 125
Figure 5.1 Finding virtual neighbors and recommendation in the Siteseer system
... 128
Figure 5.2 Generating recommendations by identifying: closest users(a), similarly
rated contents (b), similarities between users and contents(c) 129
Figure 5.3 Execution of xJSP application in the portal framework 132
Figure 5.4 Using Microsoft Excel as automation server...................................... 134
Figure 5.5 Extending portal framework with advisor module........................... 145
Figure 5.6 Collaboration diagram for DBConnPortalImpl.................................. 146
Figure 5.7 Class diagram for the advisor.clustering package................... 147
Figure 5.8 CreateClustersTag:doEndTag()sequence diagram 149
Figure 5.9 ADO wrapper classes ... 152
Figure 5.10 Class diagram for the Organizer tag library................................. 154
Figure 5.11 Class hierarchy for CustomEventListTag 155
Figure 5.12 The getXMLOutput() method sequence diagram......................... 156
Figure 5.13 The Events:getEvents() method sequence diagram................ 159
Figure 5.14 A student portal.. 160
Figure 5.15 The scheme for the Course Sheduler relational database................... 162
Figure 5.16 The scheme for the LectureRecommendation DMM........................ 163
Figure 5.17 The content of LectureRecomendation DMM.................................. 164
Figure 5.18 Overview of available lectures in the 5th semester........................... 167
Figure 5.19 1 XML scheme for the XML tree generated using the <weekview/>
tag .. 170
Figure 5.20 The ChooseLectures application... 174
Figure 5.21 The Recommend application... 175
Figure 6.1 The Chariot system for image retrieval ... 179

